On the Edge Metric Dimension of Different Families of Mobius Networks

被引:25
作者
Deng, Bo [1 ,2 ]
Nadeem, Muhammad Faisal [3 ]
Azeem, Muhammad [3 ,4 ]
机构
[1] Qinghai Normal Univ, Sch Math & Stat, Xining, Peoples R China
[2] Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[3] Univ Islamabad, Dept Math, COMSATS, Lahore Campus, Lahore, Pakistan
[4] Univ Putra Malaysia, Fac Engn, Dept Aerosp Engn, Seri Kembangan, Malaysia
关键词
Graph theory;
D O I
10.1155/2021/6623208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For an ordered subset Q(e) of vertices in a simple connected graph G, a vertex x is an element of V distinguishes two edges e(1) ,e(2) is an element of E, if d (x, e(1)) # d (x, e(2)). A subset Q(e) having minimum vertices is called an edge metric generator for G, if every two distinct edges of G are distinguished by some vertex of Q(e). The minimum cardinality of an edge metric generator for G is called the edge metric dimension, and it is denoted by dim(e) (G). In this paper, we study the edge resolvability parameter for different families of Mobius ladder networks and we find the exact edge metric dimension of triangular, square, and hexagonal Mobius ladder networks.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
Ahmad Ali, 2020, Proyecciones (Antofagasta), V39, P287, DOI 10.22199/issn.0717-6279-2020-02-0018
[2]   Computing the edge metric dimension of convex polytopes related graphs [J].
Ahsan, Muhammad ;
Zahid, Zohaib ;
Zafar, Sohail ;
Rafiq, Arif ;
Sindhu, Muhammad Sarwar ;
Umar, Muhammad .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (02) :174-188
[3]  
Ali M., 2012, Open Journal of Discrete Applied Mathematics, V02, P21, DOI [10.4236/ojdm.2012.21005, DOI 10.4236/OJDM.2012.21005]
[4]  
Ali M, 2012, ARS COMBINATORIA, V105, P403
[5]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[6]   MASTERMIND [J].
CHVATAL, V .
COMBINATORICA, 1983, 3 (3-4) :325-329
[7]  
Erdos R., 1963, MTA Mat. Kut. Int. Kozl, V8, P241
[8]  
Harary F., 1976, Ars Comb., V2, P191
[9]   Uniquely identifying the edges of a graph: The edge metric dimension [J].
Kelenc, Aleksander ;
Tratnik, Niko ;
Yero, Ismael G. .
DISCRETE APPLIED MATHEMATICS, 2018, 251 :204-220
[10]   Landmarks in graphs [J].
Khuller, S ;
Raghavachari, B ;
Rosenfeld, A .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) :217-229