AN EXPONENTIALLY-AVERAGED VASYUNIN FORMULA

被引:3
作者
Darses, Sebastien [1 ]
Hillion, Erwan [1 ]
机构
[1] Aix Marseille Univ, I2M, Cent Marseille, CNRS, Marseille, France
关键词
D O I
10.1090/proc/15422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Vasyunin-type formula for an autocorrelation function arising from a Nyman-Beurling criterion generalized to a probabilistic framework. This formula can also be seen as a reciprocity formula for cotangent sums, related to the ones proven by Bettin and Conrey [Int. Math. Res. Not. IMRN 24 (2013), pp. 5709-5726] and Auli, Bayad, and Beck [Acta Arith. 181 (2017), pp. 297-319].
引用
收藏
页码:2969 / 2982
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1995, ST PETERSBURG MATH J
[2]   Reciprocity theorems for Bettin-Conrey sums [J].
Auli, Juan S. ;
Bayad, Abdelmejid ;
Beck, Matthias .
ACTA ARITHMETICA, 2017, 181 (04) :297-319
[3]  
Báez-Duarte L, 2005, RAMANUJAN J, V9, P215, DOI 10.1007/s11139-005-0834-4
[4]   Notes on the Rieman ζ-function, 3 [J].
Báez-Duarte, L ;
Balazard, M ;
Landreau, B ;
Saias, E .
ADVANCES IN MATHEMATICS, 2000, 149 (01) :130-144
[5]  
Balazard M, 2018, COMMUNICATION
[6]   A Reciprocity Formula for a Cotangent Sum [J].
Bettin, Sandro ;
Conrey, John Brian .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (24) :5709-5726
[7]   On the Distribution of a Cotangent Sum [J].
Bettin, Sandro .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) :11419-11432
[8]   Period functions and cotangent sums [J].
Bettin, Sandro ;
Conrey, Brian .
ALGEBRA & NUMBER THEORY, 2013, 7 (01) :215-242
[10]  
Hillion E., 2018, ARXIV180506