Learning Rich Features from RGB-D Images for Object Detection and Segmentation

被引:994
|
作者
Gupta, Saurabh [1 ]
Girshick, Ross [1 ]
Arbelaez, Pablo [2 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Ios Andes, Bogota, Colombia
来源
COMPUTER VISION - ECCV 2014, PT VII | 2014年 / 8695卷
关键词
RGB-D perception; object detection; object segmentation;
D O I
10.1007/978-3-319-10584-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity. We demonstrate that this geocentric embedding works better than using raw depth images for learning feature representations with convolutional neural networks. Our final object detection system achieves an average precision of 37.3%, which is a 56% relative improvement over existing methods. We then focus on the task of instance segmentation where we label pixels belonging to object instances found by our detector. For this task, we propose a decision forest approach that classifies pixels in the detection window as foreground or background using a family of unary and binary tests that query shape and geocentric pose features. Finally, we use the output from our object detectors in an existing superpixel classification framework for semantic scene segmentation and achieve a 24% relative improvement over current state-of-the-art for the object categories that we study. We believe advances such as those represented in this paper will facilitate the use of perception in fields like robotics.
引用
收藏
页码:345 / 360
页数:16
相关论文
共 50 条
  • [31] Selective Features for RGB-D Saliency
    Zhu, Lei
    Cao, Zhiguo
    Fang, Zhiwen
    Xiao, Yang
    Wu, Jin
    Deng, Huiping
    Liu, Jing
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 512 - 517
  • [32] RGB-D saliency detection via complementary and selective learning
    Pan, Wenwen
    Sun, Xiaofei
    Qian, Yunsheng
    APPLIED INTELLIGENCE, 2023, 53 (07) : 7957 - 7969
  • [33] Automatic Object Segmentation on RGB-D Data using Surface Normals and Region Similarity
    Yalic, Hamdi Yalin
    Can, Ahmet Burak
    VISAPP: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL 4: VISAPP, 2018, : 379 - 386
  • [34] Automatic objects segmentation with RGB-D cameras
    Liu, Haowei
    Philipose, Matthai
    Sun, Ming-Ting
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (04) : 709 - 718
  • [35] Estimating the 3D center point of an object with Kinect sensor RGB-D images
    Armenio, Gustavo Fardo
    Fabro, Joao Alberto
    Tognella, Renzo de Rosa
    Conter, Felipe Pierre
    de Oliveira, Marlon Vaz
    Silva, Everson de Souza
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 478 - 483
  • [36] RGB-D Salient Object Detection Using Saliency and Edge Reverse Attention
    Ikeda, Tomoki
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 68818 - 68825
  • [37] RGB-D Scene Recognition with Object-to-Object Relation
    Song, Xinhang
    Chen, Chengpeng
    Jiang, Shuqiang
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 600 - 608
  • [38] Spatial Cross-Attention RGB-D Fusion Module for Object Detection
    Gao, Shangyin
    Markhasin, Lev
    Wang, Bi
    IEEE MMSP 2021: 2021 IEEE 23RD INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2021,
  • [39] Multi-Prior Driven Network for RGB-D Salient Object Detection
    Zhang, Xiaoqin
    Xu, Yuewang
    Wang, Tao
    Liao, Tangfei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9209 - 9222
  • [40] LIANet: Layer Interactive Attention Network for RGB-D Salient Object Detection
    Han, Yibo
    Wang, Liejun
    Du, Anyu
    Jiang, Shaochen
    IEEE ACCESS, 2022, 10 : 25435 - 25447