Learning Rich Features from RGB-D Images for Object Detection and Segmentation

被引:994
|
作者
Gupta, Saurabh [1 ]
Girshick, Ross [1 ]
Arbelaez, Pablo [2 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Ios Andes, Bogota, Colombia
来源
COMPUTER VISION - ECCV 2014, PT VII | 2014年 / 8695卷
关键词
RGB-D perception; object detection; object segmentation;
D O I
10.1007/978-3-319-10584-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity. We demonstrate that this geocentric embedding works better than using raw depth images for learning feature representations with convolutional neural networks. Our final object detection system achieves an average precision of 37.3%, which is a 56% relative improvement over existing methods. We then focus on the task of instance segmentation where we label pixels belonging to object instances found by our detector. For this task, we propose a decision forest approach that classifies pixels in the detection window as foreground or background using a family of unary and binary tests that query shape and geocentric pose features. Finally, we use the output from our object detectors in an existing superpixel classification framework for semantic scene segmentation and achieve a 24% relative improvement over current state-of-the-art for the object categories that we study. We believe advances such as those represented in this paper will facilitate the use of perception in fields like robotics.
引用
收藏
页码:345 / 360
页数:16
相关论文
共 50 条
  • [21] Visual Saliency Detection for RGB-D Images with Generative Model
    Wang, Song-Tao
    Zhou, Zhen
    Qu, Han-Bing
    Li, Bin
    COMPUTER VISION - ACCV 2016, PT V, 2017, 10115 : 20 - 35
  • [22] Object Detection-Based One-Shot Imitation Learning with an RGB-D Camera
    Shao, Quanquan
    Qi, Jin
    Ma, Jin
    Fang, Yi
    Wang, Weiming
    Hu, Jie
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [23] Self-Supervised Pretraining With Multimodality Representation Enhancement for Salient Object Detection in RGB-D Images
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    Zhang, Yonggang
    Huang, Yulong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [24] Learning Implicit Class Knowledge for RGB-D Co-Salient Object Detection With Transformers
    Zhang, Ni
    Han, Junwei
    Liu, Nian
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4556 - 4570
  • [25] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [26] RGB-D Point Cloud Registration Based on Salient Object Detection
    Wan, Teng
    Du, Shaoyi
    Cui, Wenting
    Yao, Runzhao
    Ge, Yuyan
    Li, Ce
    Gao, Yue
    Zheng, Nanning
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3547 - 3559
  • [27] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3528 - 3542
  • [28] Adaptive Depth Enhancement Network for RGB-D Salient Object Detection
    Yi, Kang
    Li, Yumeng
    Tang, Haoran
    Xu, Jing
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 176 - 180
  • [29] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [30] Semantic parsing for priming object detection in indoors RGB-D scenes
    Cadena, Cesar
    Kosecka, Jana
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (4-5) : 582 - 597