Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents

被引:28
作者
Kang, DS [1 ]
Peng, SJ
机构
[1] S Cent Univ Natl, Dept Math, Wuhan 430074, Peoples R China
[2] Xiaogan Univ, Dept Math, Xiaogan 432100, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
D O I
10.1007/BF02803503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of RN be a smooth bounded domain such that 0 is an element of Omega, N greater than or equal to 3, 0 less than or equal to s < 2, 2(*) (s) = 2(N - s)/(N - 2). We prove the existence of nontrival solutions for the singular critical problem - Deltau - mu(u)/(\x\2) = \u\(2*(s)-2)/\x\(s) u +lambdau with Dirichlet boundary condition on Omega for suitable positive parameters lambda and mu.
引用
收藏
页码:281 / 297
页数:17
相关论文
共 19 条
[1]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[2]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[3]   A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms [J].
Cao, DM ;
Peng, SJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :424-434
[4]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[5]  
2-I
[6]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[7]   ON THE BEST CONSTANT FOR A WEIGHTED SOBOLEV-HARDY INEQUALITY [J].
CHOU, KS ;
CHU, CW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :137-151
[8]   Selected new aspects of the calculus of variations in the large [J].
Ekeland, I ;
Ghoussoub, N .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (02) :207-265
[9]   Existence of solutions for singular critical growth semilinear elliptic equations [J].
Ferrero, A ;
Gazzola, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (02) :494-522
[10]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743