Glutamine Modulates Macrophage Lipotoxicity

被引:44
作者
He, Li [1 ,2 ]
Weber, Kassandra J. [1 ,2 ]
Schilling, Joel D. [1 ,2 ,3 ]
机构
[1] Washington Univ, Sch Med, Diabet Cardiovasc Dis Ctr, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA
关键词
lysosome; cell death; metabolism; inflammasome; METABOLISM; ACTIVATION; INFLAMMATION; AUTOPHAGY; DISEASE; OBESITY; MECHANISMS; PHENOTYPE; GLUCOSE; WOUNDS;
D O I
10.3390/nu8040215
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs), activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli.
引用
收藏
页数:14
相关论文
共 43 条
[1]   Mechanisms determining course and outcome of diabetic patients who have had acute myocardial infarction [J].
Aronson, D ;
Rayfield, EJ ;
Chesebro, JH .
ANNALS OF INTERNAL MEDICINE, 1997, 126 (04) :296-306
[2]   Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization [J].
Bhattacharya, Sayanti ;
Granger, Christopher B. ;
Craig, Damian ;
Haynes, Carol ;
Bain, James ;
Stevens, Robert D. ;
Hauser, Elizabeth R. ;
Newgard, Christopher B. ;
Kraus, William E. ;
Newby, L. Kristin ;
Shah, Svati H. .
ATHEROSCLEROSIS, 2014, 232 (01) :191-196
[3]  
Choi AMK, 2013, NEW ENGL J MED, V368, P1845, DOI [10.1056/NEJMra1205406, 10.1056/NEJMc1303158]
[4]   Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan [J].
Eisenberg, Tobias ;
Schroeder, Sabrina ;
Andryushkova, Aleksandra ;
Pendl, Tobias ;
Kuettner, Victoria ;
Bhukel, Anuradha ;
Marino, Guillermo ;
Pietrocola, Federico ;
Harger, Alexandra ;
Zimmermann, Andreas ;
Moustafa, Tarek ;
Sprenger, Adrian ;
Jany, Evelyne ;
Buettner, Sabrina ;
Carmona-Gutierrez, Didac ;
Ruckenstuhl, Christoph ;
Ring, Julia ;
Reichelt, Wieland ;
Schimmel, Katharina ;
Leeb, Tina ;
Moser, Claudia ;
Schatz, Stefanie ;
Kamolz, Lars-Peter ;
Magnes, Christoph ;
Sinner, Frank ;
Sedej, Simon ;
Froehlich, Kai-Uwe ;
Juhasz, Gabor ;
Pieber, Thomas R. ;
Dengjel, Joern ;
Sigrist, Stephan J. ;
Kroemer, Guido ;
Madeo, Frank .
CELL METABOLISM, 2014, 19 (03) :431-444
[5]   Contribution of metabolic reprogramming to macrophage plasticity and function [J].
El Kasmi, Karim C. ;
Stenmark, Kurt R. .
SEMINARS IN IMMUNOLOGY, 2015, 27 (04) :267-275
[6]   Myocardial infarction and heart failure in the db/db diabetic mouse [J].
Greer, JJM ;
Ware, DP ;
Lefer, DJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2006, 290 (01) :H146-H153
[7]   GAS CHROMATOGRAPHIC ANALYSIS OF THE FATTY ACID COMPOSITION OF THE PLASMA LIPIDS IN NORMAL AND DIABETIC SUBJECTS [J].
HALLGREN, B ;
STENHAGEN, S ;
SVANBORG, A ;
SVENNERHOLM, L .
JOURNAL OF CLINICAL INVESTIGATION, 1960, 39 (09) :1424-1434
[8]   Nutrient sensing and inflammation in metabolic diseases [J].
Hotamisligil, Goekhan S. ;
Erbay, Ebru .
NATURE REVIEWS IMMUNOLOGY, 2008, 8 (12) :923-934
[9]   Relationships Between Circulating Metabolic Intermediates and Insulin Action in Overweight to Obese, Inactive Men and Women [J].
Huffman, Kim M. ;
Shah, Svati H. ;
Stevens, Robert D. ;
Bain, James R. ;
Muehlbauer, Michael ;
Slentz, Cris A. ;
Tanner, Charles J. ;
Kuchibhatla, Maragatha ;
Houmard, Joseph A. ;
Newgard, Christopher B. ;
Kraus, William E. .
DIABETES CARE, 2009, 32 (09) :1678-1683
[10]   Differential regulation of mTORC1 by leucine and glutamine [J].
Jewell, Jenna L. ;
Kim, Young Chul ;
Russell, Ryan C. ;
Yu, Fa-Xing ;
Park, Hyun Woo ;
Plouffe, Steven W. ;
Tagliabracci, Vincent S. ;
Guan, Kun-Liang .
SCIENCE, 2015, 347 (6218) :194-198