Weak convergence of the scaled median of independent Brownian motions

被引:12
作者
Swanson, Jason [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Brownian motion; median; weak convergence; fractional Brownian motion; tightness;
D O I
10.1007/s00440-006-0024-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the median of n independent Brownian motions, denoted by M-n(t), and show that root n M-n, converges weakly to a centered Gaussian process. The chief difficulty is establishing tightness, which is proved through direct estimates on the increments of the median process. An explicit formula is given for the covariance function of the limit process. The limit process is also shown to be Holder continuous with exponent gamma for all gamma < 1/4.
引用
收藏
页码:269 / 304
页数:36
相关论文
共 8 条
  • [1] DURR D, 1985, COMMUN PURE APPL MAT, V38, P575
  • [2] Harris T., 1965, J APPL PROBAB, V2, P323, DOI DOI 10.2307/3212197
  • [3] Karatzas I, 2014, Brownian Motion and Stochastics Calculus, V113
  • [4] Reiss R.-D., 1989, APPROXIMATE DISTRIBU
  • [5] SPITZER F, 1968, J MATH MECH, V18, P973
  • [6] Stroock D.W., 1993, PROBABILITY THEORY
  • [7] SWANSON J, 2004, VARIATIONS STOCHASTI
  • [8] A test problem for molecular dynamics integrators
    Tupper, PF
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (02) : 286 - 309