HOTMAP: Global hot target detection at moderate spatial resolution

被引:62
作者
Murphy, Sam W. [1 ,2 ]
de Souza Filho, Carlos Roberto [1 ]
Wright, Rob [2 ]
Sabatino, Giovanni [3 ,4 ]
Pabon, Rosa Correa [1 ]
机构
[1] Univ Campinas UNICAMP, Campinas, SP, Brazil
[2] Univ Hawaii Manoa, Honolulu, HI 96822 USA
[3] ESA, RSS, Rome, Italy
[4] Progress Syst Srl, Florence, Italy
基金
巴西圣保罗研究基金会;
关键词
Hot target; Fire; Volcano; Detection; Landsat; 8; Sentinel; 2; LANDSAT THEMATIC MAPPER; ACTIVE FIRE DETECTION; VOLCANIC ACTIVITY; ASTER; MODIS; VALIDATION; CHILE;
D O I
10.1016/j.rse.2016.02.027
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Imagery from polar orbiting satellites can be used to mitigate global hazards from wildfires and volcanoes. An incipient constellation of moderate spatial resolution sensors (i.e. Landsat 8 and Sentinel 2) will provide an unprecedented combined spatial and temporal resolution of imagery with 20 to 30 m pixels and a revisit period of 2 to 4 days. This data stream could provide an invaluable contribution to existing hot target monitoring systems. We developed hot target detection algorithms for both daytime and nighttime imagery using Landsat 8 data. Performance was compared to existing state-of-the-art methods for daytime detection using a global database of active wildfires. The new approach was able to detect 80% of hot pixels (i.e. compared to 50 to 80% detected by the previous approaches) with a low false alarm rate (i.e. <10%) and fast processing speed (i.e. orders of magnitude faster than one of the previous approaches). The new detection algorithms put forward here could form the basis of the first, moderate spatial resolution, global hot target detection system. This vision is currently being realized through development of the Hotmap software within the Grid Processing on Demand (G-POD) environment of the European Space Agency (ESA). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 88
页数:11
相关论文
共 20 条
[1]   Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity [J].
Blackett, Matthew .
REMOTE SENSING, 2014, 6 (03) :2282-2295
[2]  
Bohme C., 2015, ISPRS INT ARCH PHOTO, P765
[3]  
Chien St., 2004, P 3 INT JOINT C AUTO, P420
[4]   Monitoring active volcanism with the autonomous sciencecraft experiment on EO-1 [J].
Davies, AG ;
Chien, S ;
Baker, V ;
Doggett, T ;
Dohm, J ;
Greeley, R ;
Ip, F ;
Castano, R ;
Cichy, B ;
Rabideau, G ;
Tran, D ;
Sherwood, R .
REMOTE SENSING OF ENVIRONMENT, 2006, 101 (04) :427-446
[5]  
FLYNN LP, 1994, B VOLCANOL, V56, P284, DOI 10.1007/BF00302081
[6]   A COMPARISON OF THE THERMAL-CHARACTERISTICS OF ACTIVE LAVA FLOWS AND FOREST-FIRES [J].
FLYNN, LP ;
MOUGINISMARK, PJ .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (19) :2577-2580
[7]  
FRANCIS PW, 1987, GEOLOGY, V15, P614, DOI 10.1130/0091-7613(1987)15<614:UTLTMT>2.0.CO
[8]  
2
[9]   An enhanced contextual fire detection algorithm for MODIS [J].
Giglio, L ;
Descloitres, J ;
Justice, CO ;
Kaufman, YJ .
REMOTE SENSING OF ENVIRONMENT, 2003, 87 (2-3) :273-282
[10]   Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER) [J].
Giglio, Louis ;
Csiszar, Ivan ;
Restas, Agoston ;
Morisette, Jeffrey T. ;
Schroeder, Wilfrid ;
Morton, Douglas ;
Justice, Christopher O. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) :3055-3063