Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules

被引:46
作者
Otamendi, Urtzi [1 ]
Martinez, Inigo [1 ,2 ]
Quartulli, Marco [1 ]
Olaizola, Igor G. [1 ]
Viles, Elisabeth [2 ,3 ]
Cambarau, Werther [4 ]
机构
[1] Vicomtech Fdn, Basque Res & Technol Alliance BRTA, Donostia San Sebastian 20009, Spain
[2] Univ Navarra, TECNUN Sch Engn, Donostia San Sebastian 20018, Spain
[3] Univ Navarra, Inst Data Sci & Artificial Intelligence, Pamplona 31009, Spain
[4] Tecnalia Res & Innovat, Basque Res & Technol Alliance BRTA, Donostia San Sebastian 20009, Spain
关键词
Electroluminescence images; Photovoltaic modules; Deep learning; Anomaly detection; Weakly supervised segmentation; Deep autoencoder; DEFECTS; IMPACT;
D O I
10.1016/j.solener.2021.03.058
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to maintain productivity and prolong components' life. Of all defects, cell-level anomalies can lead to serious failures and may affect surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence (EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely low-level information from individual PV cell images, and their performance is conditioned by the available training data. In this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection (modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend the pipeline towards new functionalities.
引用
收藏
页码:914 / 926
页数:13
相关论文
共 50 条
[1]  
Addabbo P, 2017, IEEE METROL AEROSPAC, P345, DOI 10.1109/MetroAeroSpace.2017.7999594
[2]   CNN based automatic detection of photovoltaic cell defects in electroluminescence images [J].
Akram, M. Waqar ;
Li, Guiqiang ;
Jin, Yi ;
Chen, Xiao ;
Zhu, Changan ;
Zhao, Xudong ;
Khaliq, Abdul ;
Faheem, M. ;
Ahmad, Ashfaq .
ENERGY, 2019, 189
[3]  
[Anonymous], 2014, Comput. Sci.
[4]  
[Anonymous], 2016, P COMPUTER VISION EC, DOI DOI 10.1007/978-3-319-46448-0_2
[5]   Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique [J].
Anwar, Said Amirul ;
Abdullah, Mohd Zaid .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2014,
[6]  
Balzategui J, 2020, IEEE/SICE I S SYS IN, P949, DOI [10.1109/SII46433.2020.9026211, 10.1109/sii46433.2020.9026211]
[7]  
Bergmann P., 2018, CORR
[8]  
Buerhop-Lutz C., 2018, BENCHMARK VISUAL IDE, DOI [10.4229/35thEUPVSEC20182018-5CV.3.15, DOI 10.4229/35THEUPVSEC20182018-5CV.3.15.ACCESSED:2019-11-28]
[9]   Albumentations: Fast and Flexible Image Augmentations [J].
Buslaev, Alexander ;
Iglovikov, Vladimir I. ;
Khvedchenya, Eugene ;
Parinov, Alex ;
Druzhinin, Mikhail ;
Kalinin, Alexandr A. .
INFORMATION, 2020, 11 (02)
[10]  
Chen HY, 2019, CHIN AUTOM CONGR, P2565, DOI [10.1109/CAC48633.2019.8996338, 10.1109/cac48633.2019.8996338]