Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture

被引:122
作者
Eskin, A [1 ]
Margulis, G
Mozes, S
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Yale Univ, New Haven, CT USA
[3] Hebrew Univ Jerusalem, Jerusalem, Israel
关键词
D O I
10.2307/120984
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:93 / 141
页数:49
相关论文
共 45 条
[11]   VALUES OF QUADRATIC-FORMS AT PRIMITIVE INTEGRAL POINTS [J].
DANI, SG ;
MARGULIS, GA .
INVENTIONES MATHEMATICAE, 1989, 98 (02) :405-424
[12]   ON ORBITS OF UNIPOTENT FLOWS ON HOMOGENEOUS SPACES .2. [J].
DANI, SG .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :167-182
[13]   INVARIANT MEASURES, MINIMAL SETS AND A LEMMA OF MARGULIS [J].
DANI, SG .
INVENTIONES MATHEMATICAE, 1979, 51 (03) :239-260
[14]  
ESKIN A, 1995, ERA A M S, V1, P124
[15]  
ESKIN A, 1993, DUKE MATH J, V71, P143
[16]  
Helgason S., 1984, GROUPS GEOMETRIC ANA
[17]  
Howe R., 1992, NONABELIAN HARMONIC
[18]  
HOWE R, 1980, HARMONIC ANAL GROUP
[19]  
KATOK A, 1994, PUBL MATH-PARIS, V79, P131
[20]  
Kleinbock D.Y., 1996, SIN MOSC SEM DYN S 2, P141