Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture

被引:122
作者
Eskin, A [1 ]
Margulis, G
Mozes, S
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Yale Univ, New Haven, CT USA
[3] Hebrew Univ Jerusalem, Jerusalem, Israel
关键词
D O I
10.2307/120984
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:93 / 141
页数:49
相关论文
共 45 条
[1]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR
[2]   VALUES OF INDEFINITE QUADRATIC-FORMS AT INTEGRAL POINTS AND FLOWS ON SPACES OF LATTICES [J].
BOREL, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 32 (02) :184-204
[3]  
BOREL A, 1969, PUBL I MATH U STRASS, V15
[4]  
BRENNAN T, 1994, THESIS PRINCETON U
[5]  
BRENNER MR, 1985, TABLES DOMINANT WEIG
[6]   ON THE PRODUCT OF 3 HOMOGENEOUS LINEAR FORMS AND INDEFINITE TERNARY QUADRATIC FORMS [J].
CASSELS, JWS ;
SWINNERTONDYER, HPF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 248 (940) :73-96
[7]  
Dani S.G., 1984, ERGOD THEOR DYN SYST, V4, P25, DOI DOI 10.1017/S0143385700002248.MR758891
[8]  
Dani S.G., 1993, Adv. Soviet Math., V16, P91
[9]   ORBIT CLOSURES OF GENERIC UNIPOTENT FLOWS ON HOMOGENEOUS SPACES OF SL(3,R) [J].
DANI, SG ;
MARGULIS, GA .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :101-128
[10]   INVARIANT-MEASURES AND MINIMAL SETS OF HOROSPHERICAL FLOWS [J].
DANI, SG .
INVENTIONES MATHEMATICAE, 1981, 64 (02) :357-385