On the topology of the set of Nash equilibria

被引:2
作者
Balkenborg, Dieter [1 ]
Vermeulen, Dries [2 ]
机构
[1] Univ Exeter, TARC, Rennes Dr, Exeter EX4 4PU, Devon, England
[2] Univ Maastricht, Dept Quantitat Econ, POB 616, NL-6200 MD Maastricht, Netherlands
关键词
Strategic form games; Nash equilibrium; Topology; UNIVERSALITY; EVOLUTIONARY;
D O I
10.1016/j.geb.2019.08.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
It has been an open conjecture in the theory of non-cooperative games that Nash equilibrium is universal for the collection of (non-empty) compact semi-algebraic sets, meaning that for every such set there is a game whose set of Nash equilibria is homeomorphic to the given set. In this paper we prove this conjecture. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 16 条
[1]   On the evolutionary selection of sets of Nash equilibria [J].
Balkenborg, Dieter ;
Schlag, Karl H. .
JOURNAL OF ECONOMIC THEORY, 2007, 133 (01) :295-315
[2]   Universality of Nash components [J].
Balkenborg, Dieter ;
Vermeulen, Dries .
GAMES AND ECONOMIC BEHAVIOR, 2014, 86 :67-76
[3]   THE ALGEBRAIC-GEOMETRY OF PERFECT AND SEQUENTIAL EQUILIBRIUM [J].
BLUME, LE ;
ZAME, WR .
ECONOMETRICA, 1994, 62 (04) :783-794
[4]  
Bubelis V, 1978, INT J GAME THEORY, V8, P65
[5]   Universality of Nash equilibria [J].
Datta, RS .
MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) :424-432
[6]   From evolutionary to strategic stability [J].
Demichelis, S ;
Ritzberger, K .
JOURNAL OF ECONOMIC THEORY, 2003, 113 (01) :51-75
[7]  
Hironaka H, 1975, P S PURE MATH, V25
[8]   ON THE STRATEGIC STABILITY OF EQUILIBRIA [J].
KOHLBERG, E ;
MERTENS, JF .
ECONOMETRICA, 1986, 54 (05) :1003-1037
[9]   SEQUENTIAL EQUILIBRIA [J].
KREPS, DM ;
WILSON, R .
ECONOMETRICA, 1982, 50 (04) :863-894
[10]   Projections and functions of Nash equilibria [J].
Levy, Yehuda John .
INTERNATIONAL JOURNAL OF GAME THEORY, 2016, 45 (1-2) :435-459