QUANTIFYING ACTIN FILAMENTS IN MICROSCOPIC IMAGES USING KEYPOINT DETECTION TECHNIQUES AND A FAST MARCHING ALGORITHM

被引:0
|
作者
Liu, Yi [1 ]
Nedo, Alexander [1 ]
Seward, Kody [1 ]
Caplan, Jeffrey [1 ]
Kambhamettu, Chandra [1 ]
机构
[1] Univ Delaware, Newark, DE 19716 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2020年
关键词
Actin filament; Convolutional neural network; Keypoint detection; Quantification analysis; SEGMENTATION;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The actin filament plays a fundamental role in numerous cellular processes such as cell growth, proliferation, migration, division, and locomotion. The actin cytoskeleton is highly dynamical and can polymerize and depolymerize in a very short time under different stimuli. To study the mechanics of actin filament, quantifying the length and number of actin filaments in each time frame of microscopic images is fundamental. In this paper, we adopt a Convolutional Neural Network (CNN) to segment actin filaments first, and then we utilize a modified Resnet to detect junctions and endpoints of filaments. With binary segmentation and detected keypoints, we apply a fast marching algorithm to obtain the number and length of each actin filament in microscopic images. We have also collected a dataset of 10 microscopic images of actin filaments to test our method. Our experiments show that our approach outperforms other existing approaches tackling this problem regarding both accuracy and inference time.
引用
收藏
页码:2506 / 2510
页数:5
相关论文
共 50 条
  • [31] Exudates Detection Using Morphology Mean Shift Algorithm in Retinal Images
    Wisaeng, Kittipol
    Sa-Ngiamvibool, Worawat
    IEEE ACCESS, 2019, 7 : 11946 - 11958
  • [32] Border Detection in Skin Lesion Images Using an Improved Clustering Algorithm
    Jayalakshmi, D.
    Dheeba, J.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2020, 16 (04) : 15 - 29
  • [33] Fast and accurate border detection in dermoscopy images using statistical region merging
    Celebi, M. Emre
    Kingravi, Hassan A.
    Iyatomi, Hitoshi
    Lee, JeongKyu
    Aslandogan, Y. Alp
    Van Stoecker, William
    Moss, Randy
    Malters, Joseph M.
    Marghoob, Ashfaq A.
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [34] Automatic Nuclei Detection on Cytological Images Using the Firefly Optimization Algorithm
    Filipczuk, Pawel
    Wojtak, Weronika
    Obuchowicz, Andrzej
    INFORMATION TECHNOLOGIES IN BIOMEDICINE, ITIB 2012, 2012, 7339 : 85 - 92
  • [35] Fast template matching and object detection techniques using φ-correlation and binary circuits
    Annaby, Mahmoud
    Fouda, Yasser
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 6469 - 6496
  • [36] Tumor Detection in Brain Magnetic Resonance Images Using Modified Thresholding Techniques
    Biji, C. L.
    Selvathi, D.
    Panicker, Asha
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT 4, 2011, 193 : 300 - +
  • [37] A comparative study on keypoint detection for developmental dysplasia of hip diagnosis using deep learning models in X-ray and ultrasound images
    Kim, Sung-Hyun
    Lee, Kyungsu
    Lee, Si-Wook
    Chang, Jin Ho
    Hwang, Jae Youn
    Kim, Jihun
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2023, 42 (05): : 460 - 468
  • [38] Comparative Study on Different Local Adaptive Thresholding Techniques for Detection of Sickle Cell Anaemia from Microscopic Blood Images
    Patgiri, Chayashree
    Ganguly, Amrita
    2019 IEEE 16TH INDIA COUNCIL INTERNATIONAL CONFERENCE (IEEE INDICON 2019), 2019,
  • [39] Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier
    Saeedizadeh, Z.
    Dehnavi, A. Mehri
    Talebi, A.
    Rabbani, H.
    Sarrafzadeh, O.
    Vard, A.
    JOURNAL OF MICROSCOPY, 2016, 261 (01) : 46 - 56
  • [40] An Automatic Segmentation Algorithm for Solar Filaments in H-Alpha Images using a Context-based Sliding Window
    Atoum, Ibrahim A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (05) : 286 - 291