Robust quantum state transfer via topological edge states in superconducting qubit chains

被引:129
作者
Mei, Feng [1 ,2 ]
Chen, Gang [1 ,2 ]
Tian, Lin [3 ]
Zhu, Shi-Liang [4 ,5 ,6 ]
Jia, Suotang [1 ,2 ]
机构
[1] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA
[4] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[5] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, SPTE, Guangzhou 510006, Guangdong, Peoples R China
[6] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum, Hefei 230026, Peoples R China
基金
美国国家科学基金会; 国家重点研发计划;
关键词
DYNAMICS; PHOTONS; SIMULATOR;
D O I
10.1103/PhysRevA.98.012331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum information processing. Here we present an experimentally feasible mechanism for realizing robust QST via topologically protected edge states in superconducting qubit chains. Using superconducting Xmon qubits with tunable couplings, we construct generalized Su-Schrieffer-Heeger models and analytically derive the wave functions of topological edge states. We find that such edge states can be employed as a quantum channel to realize robust QST between remote qubits. With a numerical simulation, we show that both single-qubit states and two-qubit entangled states can be robustly transferred in the presence of sizable imperfections in the qubit couplings. The transfer fidelity demonstrates a wide plateau at the value of unity in the imperfection magnitude. This approach is general and can be implemented in a variety of quantum computing platforms.
引用
收藏
页数:6
相关论文
共 47 条
  • [1] Asboth J. K., 2016, LECT NOTES PHYS, V979
  • [2] Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors
    Awschalom, David D.
    Bassett, Lee C.
    Dzurak, Andrew S.
    Hu, Evelyn L.
    Petta, Jason R.
    [J]. SCIENCE, 2013, 339 (6124) : 1174 - 1179
  • [3] Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
    Barends, R.
    Kelly, J.
    Megrant, A.
    Sank, D.
    Jeffrey, E.
    Chen, Y.
    Yin, Y.
    Chiaro, B.
    Mutus, J.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Wenner, J.
    White, T. C.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (08)
  • [4] Probing many-body dynamics on a 51-atom quantum simulator
    Bernien, Hannes
    Schwartz, Sylvain
    Keesling, Alexander
    Levine, Harry
    Omran, Ahmed
    Pichler, Hannes
    Choi, Soonwon
    Zibrov, Alexander S.
    Endres, Manuel
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    [J]. NATURE, 2017, 551 (7682) : 579 - +
  • [5] Transitionless quantum driving
    Berry, M. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
  • [6] Entangled states of trapped atomic ions
    Blatt, Rainer
    Wineland, David
    [J]. NATURE, 2008, 453 (7198) : 1008 - 1015
  • [7] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    [J]. NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [8] Quantum communication through an unmodulated spin chain
    Bose, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (20)
  • [9] Quantum communication through spin chain dynamics: an introductory overview
    Bose, Sougato
    [J]. CONTEMPORARY PHYSICS, 2007, 48 (01) : 13 - 30
  • [10] Qubit Architecture with High Coherence and Fast Tunable Coupling
    Chen, Yu
    Neill, C.
    Roushan, P.
    Leung, N.
    Fang, M.
    Barends, R.
    Kelly, J.
    Campbell, B.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Megrant, A.
    Mutus, J. Y.
    O'Malley, P. J. J.
    Quintana, C. M.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Geller, Michael R.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (22)