A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems

被引:64
作者
Shen, Guofeng [1 ]
Gaddam, Chethan K. [3 ,4 ]
Ebersviller, Seth M. [2 ]
Wal, Randy L. Vander [3 ,4 ]
Williams, Craig [5 ]
Faircloth, Jerroll W. [6 ]
Jetter, James J. [7 ]
Hays, Michael D. [7 ]
机构
[1] US EPA, ORISE, Off Res & Dev, 109 TW Alexander Dr, Res Triangle Pk, NC 27709 USA
[2] Univ Findlay, 1000 North Main St, Findlay, OH 45840 USA
[3] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA
[4] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA
[5] CSS Dynamac Inc, 1910 Sedwick Rd, Durham, NC 27713 USA
[6] Jacobs Technol Inc, 600 William Northern Blvd, Tullahoma, TN 37388 USA
[7] US EPA, Off Res & Dev, 109 TW Alexander Dr, Res Triangle Pk, NC 27709 USA
关键词
PARTICULATE MATTER; FINE-PARTICLE; WOOD COMBUSTION; AIR-POLLUTION; CLIMATE; AEROSOL; HEALTH; NANOSTRUCTURE; METRICS; PM;
D O I
10.1021/acs.est.6b05928
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ultrafine particle (UFP) emissions and particle number size distributions (PNSD) are critical in the evaluation of air pollution impacts; however, data on UFP number emissions from cookstoves, which are a major source of many pollutants, are limited. In this study, 11 fuel-stove combinations covering a variety of fuels and different stoves are investigated for UFP emissions and PNSD. The combustion of LPG and alcohol (similar to 10(11) particles per useful energy delivered, particles/MJ(d)), and kerosene (similar to 10(13) particles/MJ(d)), produced emissions that were lower by 2-3 orders of magnitude than solid fuels (10(14)-10(15) particles/MJ(d)). Three different PNSD types unimodal distributions with peaks similar to 30-40 nm, unimodal distributions with peaks <30 nm, and bimodal distributions were observed as the result of both fuel and stove effects. The fractions of particles smaller than 30 nm (F-30) varied among the tested systems, ranging 'from 13% to 88%. The burning of LPG and alcohol had the lowest PM2.5 mass emissions, UFP number emissions, and F-30 (13-21% for LPG and 35-41% for alcohol). Emissions of PM2.5 and UFP from kerosene were, also low compared with solid fuel burning but had a relatively high F-30 value of approximately 73-80%.
引用
收藏
页码:6522 / 6532
页数:11
相关论文
共 45 条
[1]   Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark [J].
Andersen, Z. J. ;
Wahlin, P. ;
Raaschou-Nielsen, O. ;
Ketzel, M. ;
Scheike, T. ;
Loft, S. .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2008, 65 (07) :458-466
[2]   Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits [J].
Anenberg, Susan C. ;
Balakrishnan, Kalpana ;
Jetter, James ;
Masera, Omar ;
Mehta, Sumi ;
Moss, Jacob ;
Ramanathan, Veerabhadran .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) :3944-3952
[3]  
[Anonymous], WAT BOIL TEST WBT VE
[4]   Urban Ambient Particle Metrics and Health A Time-series Analysis [J].
Atkinson, Richard W. ;
Fuller, Gary W. ;
Anderson, H. Ross ;
Harrison, Roy M. ;
Armstrong, Ben .
EPIDEMIOLOGY, 2010, 21 (04) :501-511
[5]   Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective [J].
Auffan, Melanie ;
Rose, Jerome ;
Bottero, Jean-Yves ;
Lowry, Gregory V. ;
Jolivet, Jean-Pierre ;
Wiesner, Mark R. .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :634-641
[6]  
Bailis R, 2015, NAT CLIM CHANGE, V5, P266, DOI [10.1038/nclimate2491, 10.1038/NCLIMATE2491]
[7]   The impact of residential combustion emissions on atmospheric aerosol, human health, and climate [J].
Butt, E. W. ;
Rap, A. ;
Schmidt, A. ;
Scott, C. E. ;
Pringle, K. J. ;
Reddington, C. L. ;
Richards, N. A. D. ;
Woodhouse, M. T. ;
Ramirez-Villegas, J. ;
Yang, H. ;
Vakkari, V. ;
Stone, E. A. ;
Rupakheti, M. ;
Praveen, P. S. ;
van Zyl, P. G. ;
Beukes, J. P. ;
Josipovic, M. ;
Mitchell, E. J. S. ;
Sallu, S. M. ;
Forster, P. M. ;
Spracklen, D. V. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (02) :873-905
[8]   Ultrafine particle deposition in subjects with asthma [J].
Chalupa, DC ;
Morrow, PE ;
Oberdörster, G ;
Utell, MJ ;
Frampton, MW .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2004, 112 (08) :879-882
[9]   Determination of PM mass emissions from an aircraft turbine engine using particle effective density [J].
Durdina, L. ;
Brem, B. T. ;
Abegglen, M. ;
Lobo, P. ;
Rindlisbacher, T. ;
Thomson, K. A. ;
Smallwood, G. J. ;
Hagen, D. E. ;
Sierau, B. ;
Wang, J. .
ATMOSPHERIC ENVIRONMENT, 2014, 99 :500-507
[10]   Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J].
Forouzanfar, Mohammad H. ;
Alexander, Lily ;
Anderson, H. Ross ;
Bachman, Victoria F. ;
Biryukov, Stan ;
Brauer, Michael ;
Burnett, Richard ;
Casey, Daniel ;
Coates, Matthew M. ;
Cohen, Aaron ;
Delwiche, Kristen ;
Estep, Kara ;
Frostad, Joseph J. ;
Astha, K. C. ;
Kyu, Hmwe H. ;
Moradi-Lakeh, Maziar ;
Ng, Marie ;
Slepak, Erica Leigh ;
Thomas, Bernadette A. ;
Wagner, Joseph ;
Aasvang, Gunn Marit ;
Abbafati, Cristiana ;
Ozgoren, Ayse Abbasoglu ;
Abd-Allah, Foad ;
Abera, Semaw F. ;
Aboyans, Victor ;
Abraham, Biju ;
Abraham, Jerry Puthenpurakal ;
Abubakar, Ibrahim ;
Abu-Rmeileh, Niveen M. E. ;
Aburto, Tania C. ;
Achoki, Tom ;
Adelekan, Ademola ;
Adofo, Koranteng ;
Adou, Arsene K. ;
Adsuar, Jose C. ;
Afshin, Ashkan ;
Agardh, Emilie E. ;
Al Khabouri, Mazin J. ;
Al Lami, Faris H. ;
Alam, Sayed Saidul ;
Alasfoor, Deena ;
Albittar, Mohammed I. ;
Alegretti, Miguel A. ;
Aleman, Alicia V. ;
Alemu, Zewdie A. ;
Alfonso-Cristancho, Rafael ;
Alhabib, Samia ;
Ali, Raghib ;
Ali, Mohammed K. .
LANCET, 2015, 386 (10010) :2287-2323