Calorie restriction and the nutrient sensing signaling pathways

被引:62
作者
Dilova, I. [1 ]
Easlon, E. [1 ]
Lin, S. -J. [1 ]
机构
[1] Univ Calif Davis, Microbiol Sect, Coll Biol Sci, Davis, CA 95616 USA
关键词
calorie restriction; aging; Sir2; TOR; insulin/PI3K; Akt/PKB; mitochondria;
D O I
10.1007/s00018-007-6381-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calorie restriction (CR) is the most potent regimen known to extend the life span in multiple species. CR has also been shown to ameliorate several age-associated disorders in mammals and perhaps humans. CR induces diverse metabolic changes in organisms, and it is currently unclear whether and how these metabolic changes lead to life span extension. Recent studies in model systems have provided insight into the molecular mechanisms by which CR extends life span. In this review, we summarize and provide recent updates on multiple nutrient signaling pathways that have been connected to CR and longevity regulation. The roles of highly conserved longevity regulators - the Sirtuin family - in CR are also discussed.
引用
收藏
页码:752 / 767
页数:16
相关论文
共 211 条
[1]   Asymmetric inheritance of oxidatively damaged proteins during cytokinesis [J].
Aguilaniu, H ;
Gustafsson, L ;
Rigoulet, M ;
Nyström, T .
SCIENCE, 2003, 299 (5613) :1751-1753
[2]   Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Sinclair, DA .
NATURE, 2003, 423 (6936) :181-185
[3]   Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Cohen, H ;
Lin, SS ;
Manchester, JK ;
Gordon, JI ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) :18881-18890
[4]   MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE [J].
APARICIO, OM ;
BILLINGTON, BL ;
GOTTSCHLING, DE .
CELL, 1991, 66 (06) :1279-1287
[5]   The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C-elegans [J].
Apfeld, J ;
O'Connor, G ;
McDonagh, T ;
DiStefano, PS ;
Curtis, R .
GENES & DEVELOPMENT, 2004, 18 (24) :3004-3009
[6]   Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J].
Araki, T ;
Sasaki, Y ;
Milbrandt, J .
SCIENCE, 2004, 305 (5686) :1010-1013
[7]  
Ashrafi K, 2000, GENE DEV, V14, P1872
[8]  
Barbe Esther, 1996, MEDITERR POLIT, V1, P25
[9]   Insulin/IGF-I-signaling pathway:: an evolutionarily conserved mechanism of longevity from yeast to humans [J].
Barbieri, M ;
Bonafè, M ;
Franceschi, C ;
Paolisso, G .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 285 (05) :E1064-E1071
[10]   Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae [J].
Barros, MH ;
Bandy, B ;
Tahara, EB ;
Kowaltowski, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (48) :49883-49888