Error estimates for interpolation by compactly supported radial basis functions of minimal degree

被引:277
作者
Wendland, H [1 ]
机构
[1] Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany
关键词
D O I
10.1006/jath.1997.3137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider error estimates for interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated "native" Hilbert spaces are shown to be norm-equivalent to Sobolev spaces. Thus we can derive approximation orders for functions from Sobolev spaces which are comparable to those of thin-plate-spline interpolation. Finally, we investigate the numerical stability of the interpolation process. (C) 1998 Academic Press.
引用
收藏
页码:258 / 272
页数:15
相关论文
共 19 条
[1]  
ASKEY R, 1973, 1262 MRC U WISC
[2]  
Buhmann M.D., 1993, Multivariate Approximation: from CAGD to Wavelets, P35
[3]  
COOKE RG, 1937, J LOND MATH SOC, V12, P279
[4]  
DUCHON J, 1978, RAIRO-ANAL NUMER-NUM, V12, P325
[5]  
Dyn N., 1989, APPROXIMATION THEORY, VVI, P211, DOI DOI 10.1007/BF01203417
[6]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, VII
[7]   POSITIVE INTEGRALS OF BESSEL FUNCTIONS [J].
GASPER, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (05) :868-881
[8]  
Madych W.R., 1988, Approx. Theory Appl, V4, P77, DOI [10.1090/S0025-5718-1990-0993931-7, DOI 10.1090/S0025-5718-1990-0993931-7]
[9]  
MADYCH WR, 1990, MATH COMPUT, V54, P211, DOI 10.1090/S0025-5718-1990-0993931-7
[10]  
NARCOWICH F, 1991, J APPROX THEORY, V64, P84