Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge

被引:25
作者
Cookson, Tamsin [1 ,2 ]
Kalinin, Kirill [1 ,3 ]
Sigurdsson, Helgi [1 ,2 ]
Topfer, Julian D. [1 ,2 ]
Alyatkin, Sergey [1 ]
Silva, Matteo [2 ]
Langbein, Wolfgang [4 ]
Berloff, Natalia G. [1 ,3 ]
Lagoudakis, Pavlos G. [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Skolkovo, Russia
[2] Univ Southampton, Dept Phys & Astron, Southampton, Hants, England
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[4] Cardiff Univ, Sch Phys & Astron, Cardiff, Wales
基金
英国工程与自然科学研究理事会;
关键词
QUANTIZED VORTICES; VORTEX; SUPERFLUID; CURRENTS;
D O I
10.1038/s41467-021-22121-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic Bose-Einstein condensates and other superfluid systems, their experimental realisation remains elusive. Polariton condensates stand out from other superfluid systems due to their particularly strong interparticle interactions combined with their non-equilibrium nature, and as such provide an alternative testbed for the study of vortices. Here, we non-resonantly excite an odd number of polariton condensates at the vertices of a regular polygon and we observe the formation of a stable discrete vortex state with a large topological charge as a consequence of antibonding frustration between nearest neighbouring condensates. There is interest in studying vorticity in systems of light-matter interaction using different platforms. Here, the authors show vortices of topological charge more than one and their scaling in an exciton-polariton condensate using GaAs microcavity with embedded InGaAs quantum wells.
引用
收藏
页数:11
相关论文
共 78 条
[51]   Matter-wave gap vortices in optical lattices [J].
Ostrovskaya, EA ;
Kivshar, YS .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :160405-1
[52]   Rapid fair sampling of the XY spin Hamiltonian with a laser simulator [J].
Pal, Vishwa ;
Mahler, Simon ;
Tradonsky, Chene ;
Friesem, Asher A. ;
Davidson, Nir .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[53]   Observing Dissipative Topological Defects with Coupled Lasers [J].
Pal, Vishwa ;
Tradonsky, Chene ;
Chriki, Ronen ;
Friesem, Asher A. ;
Davidson, Nir .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[54]   Phase locking of even and odd number of lasers on a ring geometry: effects of topological-charge [J].
Pal, Vishwa ;
Trandonsky, Chene ;
Chriki, Ronen ;
Barach, Gilad ;
Friesem, Asher A. ;
Davidson, Nir .
OPTICS EXPRESS, 2015, 23 (10) :13041-13050
[55]  
Pismen L.M., 1999, VORTICES NONLINEAR F, V100
[56]   Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap [J].
Ryu, C. ;
Andersen, M. F. ;
Clade, P. ;
Natarajan, Vasant ;
Helmerson, K. ;
Phillips, W. D. .
PHYSICAL REVIEW LETTERS, 2007, 99 (26)
[57]  
Sanvitto D, 2011, NAT PHOTONICS, V5, P610, DOI [10.1038/NPHOTON.2011.211, 10.1038/nphoton.2011.211]
[58]   Persistent currents and quantized vortices in a polariton superfluid [J].
Sanvitto, D. ;
Marchetti, F. M. ;
Szymanska, M. H. ;
Tosi, G. ;
Baudisch, M. ;
Laussy, F. P. ;
Krizhanovskii, D. N. ;
Skolnick, M. S. ;
Marrucci, L. ;
Lemaitre, A. ;
Bloch, J. ;
Tejedor, C. ;
Vina, L. .
NATURE PHYSICS, 2010, 6 (07) :527-533
[59]  
Scully M. O., 1997, Quantum Optics
[60]   Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate [J].
Shin, Y ;
Saba, M ;
Vengalattore, M ;
Pasquini, TA ;
Sanner, C ;
Leanhardt, AE ;
Prentiss, M ;
Pritchard, DE ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :160406-1