Separating Vegetation Greening and Climate Change Controls on Evapotranspiration trend over the Loess Plateau

被引:109
作者
Jin, Zhao [1 ]
Liang, Wei [1 ,2 ,3 ]
Yang, Yuting [4 ]
Zhang, Weibin [1 ]
Yan, Jianwu [1 ,2 ]
Chen, Xuejuan [5 ]
Li, Sha [1 ]
Mo, Xingguo [5 ]
机构
[1] Shaanxi Normal Univ, Sch Geog & Tourism, Xian 710119, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Natl Demonstrat Ctr Expt Geog Educ, Xian 710119, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[4] CSIRO Land & Water, Canberra, ACT 2601, Australia
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
WATER; CHINA; SATELLITE; MODEL; SOIL; AFFORESTATION; TEMPERATURE; VARIABILITY; FEEDBACKS; ALGORITHM;
D O I
10.1038/s41598-017-08477-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Evapotranspiration (ET) is a key ecological process connecting the soil-vegetation-atmosphere system, and its changes seriously affects the regional distribution of available water resources, especially in the arid and semiarid regions. With the Grain-for-Green project implemented in the Loess Plateau (LP) since 1999, water and heat distribution across the region have experienced great changes. Here, we investigate the changes and associated driving forces of ET in the LP from 2000 to 2012 using a remote sensing-based evapotranspiration model. Results show that annual ET significantly increased by 3.4 mm per year (p = 0.05) with large interannual fluctuations during the study period. This trend is higher than coincident increases in precipitation (2.0 mm yr(-2)), implying a possible pressure of water availability. The correlation analysis showed that vegetation change is the major controlling factor on interannual variability of annual ET with similar to 52.8% of pixels scattered in the strip region from the northeastern to southwestern parts of the LP. Further factorial analysis suggested that vegetation greening is the primary driver of the rises of ET over the study period relative to climate change. Our study can provide an improved understanding of the effects of vegetation and climate change on terrestrial ecosystem ET in the LP.
引用
收藏
页数:15
相关论文
共 74 条
[1]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[2]  
Baldocchi D, 2001, B AM METEOROL SOC, V82, P2415, DOI 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO
[3]  
2
[4]   Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model [J].
Bastiaanssen, W. G. M. ;
Cheema, M. J. M. ;
Immerzeel, W. W. ;
Miltenburg, I. J. ;
Pelgrum, H. .
WATER RESOURCES RESEARCH, 2012, 48
[5]  
Bastiaanssen WGM, 1998, J HYDROL, V212, P198, DOI [10.1016/S0022-1694(98)00253-4, 10.1016/S0022-1694(98)00254-6]
[6]   Forests and climate change: Forcings, feedbacks, and the climate benefits of forests [J].
Bonan, Gordon B. .
SCIENCE, 2008, 320 (5882) :1444-1449
[7]   Balancing green and grain trade [J].
Chen, Yiping ;
Wang, Kaibo ;
Lin, Yishan ;
Shi, Weiyu ;
Song, Yi ;
He, Xinhua .
NATURE GEOSCIENCE, 2015, 8 (10) :739-741
[8]   Assessing interannual variability of evapotranspiration at the catchment scale using satellite-based evapotranspiration data sets [J].
Cheng, Lei ;
Xu, Zongxue ;
Wang, Dingbao ;
Cai, Ximing .
WATER RESOURCES RESEARCH, 2011, 47
[9]   A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data - I. Model description and comparison with observations [J].
Choudhury, BJ ;
DiGirolamo, NE .
JOURNAL OF HYDROLOGY, 1998, 205 (3-4) :164-185
[10]  
Cleugh HA, 2007, REMOTE SENS ENVIRON, V106, P285, DOI [10.1016/j.rse.2006.07.007, 10.1016/j.rse.2007.04.015]