Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:3
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2022年
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
[41]   Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images [J].
Nithya, A. ;
Appathurai, Ahilan ;
Venkatadri, N. ;
Ramji, D. R. ;
Palagan, C. Anna .
MEASUREMENT, 2020, 149
[42]   Graphical Image Region Extraction with K-Means Clustering and Watershed [J].
Jardim, Sandra ;
Antonio, Joao ;
Mora, Carlos .
JOURNAL OF IMAGING, 2022, 8 (06)
[43]   A Fast K-Means Algorithm for the Segmentation of Echocardiographic Images Using DBMS-SQL [J].
Nandagopalan, S. ;
Adiga, B. S. ;
Dhanalakshmi, C. ;
Deepak, N. .
2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 2, 2010, :162-166
[44]   Clustering of the Population benefiting from Health Insurance using K-means [J].
Zahi, Sara ;
Achchab, Boujemaa .
4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
[45]   Terahertz image segmentation using k-means clustering based on weighted feature learning and random pixel sampling [J].
Ayech, Mohamed Walid ;
Ziou, Djemel .
NEUROCOMPUTING, 2016, 175 :243-264
[46]   Refined SAR Image Segmentation Algorithm Based on K-means Clustering [J].
Xing, Tao ;
Hu, Qingrong ;
Li, Jun ;
Wang, Guanyong .
2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
[47]   A HYBRID CLUSTERING ALGORITHM COMBINING CLOUD MODEL IWO AND K-MEANS [J].
Pan, Guo ;
Li, Kenli ;
Ouyang, Aijia ;
Zhou, Xu ;
Xu, Yuming .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (06)
[48]   Implementation of K-Means Clustering in ECB Framework Of Cloud Computing Environment [J].
Dutta, Stobak ;
Sengupta, Sabnam .
PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), 2017, :293-297
[49]   A Comparative Analysis of K-means, Thresholding and Region Growing Algorithms for Segmentation of Brain Tumor of MRI Images [J].
Malik, Muhammad Sheraz Arshad ;
Shabir, Samreen ;
Asiya, Ghulam ;
Zafar, Hurya .
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (09) :148-155
[50]   Automatic Segmentation of Mammograms Using a Scale-Invariant FeatureTransform and K-Means Clustering algorithm [J].
Salazar-Licea, Luis. A. ;
Aceves, C. Mendoza M. A. ;
Pedraza, J. C. ;
Pastrana-Palma, Alberto .
2014 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2014,