Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:2
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2022年
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [31] Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering
    Krishan, Abhay
    Mittal, Deepti
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2020, 65 (03): : 301 - 313
  • [32] Point Cloud Simplification Method Based on k-Means Clustering
    He Yibo
    Chen Ranli
    Wu Kan
    Duan Zhixin
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (09)
  • [33] Wheat ear counting using K-means clustering segmentation and convolutional neural network
    Xu, Xin
    Li, Haiyang
    Yin, Fei
    Xi, Lei
    Qiao, Hongbo
    Ma, Zhaowu
    Shen, Shuaijie
    Jiang, Binchao
    Ma, Xinming
    [J]. PLANT METHODS, 2020, 16 (01)
  • [34] Wheat ear counting using K-means clustering segmentation and convolutional neural network
    Xin Xu
    Haiyang Li
    Fei Yin
    Lei Xi
    Hongbo Qiao
    Zhaowu Ma
    Shuaijie Shen
    Binchao Jiang
    Xinming Ma
    [J]. Plant Methods, 16
  • [35] Efficient brain tumor segmentation using OTSU and K-means clustering in homomorphic transform
    Faragallah, Osama S.
    El-Hoseny, Heba M.
    El-sayed, Hala S.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [36] Cauliflower Disease Identification Using Image Segmentation Based On Pso K-Means Clustering
    Manjutha, M.
    Selvakumari, Sheela
    [J]. INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2022, 12 : 26 - 32
  • [37] Automatic Parking Space Segmentation Using K-Means Clustering and Image Processing Techniques
    Romero Gonzalez, Anthony Xavier
    Campoverde Ambrosi, Kevin Sebastian
    Ramon Celi, Patricio Eduardo
    Bermeo, Alexandra
    Orellana, Marcos
    Zambrano-Martinez, Jorge Luis
    Garcia-Montero, Patricio Santiago
    [J]. INFORMATION AND COMMUNICATION TECHNOLOGIES, TICEC 2024, 2025, 2273 : 131 - 142
  • [38] Improve Image Segmentation based on Closed Form Matting Using K-Means Clustering
    Wicaksono, Yosep Aditya
    Rizaldy, Adhy
    Fahriah, Sirli
    Soeleman, Moch Arief
    [J]. 2017 INTERNATIONAL SEMINAR ON APPLICATION FOR TECHNOLOGY OF INFORMATION AND COMMUNICATION (ISEMANTIC), 2017, : 26 - 30
  • [39] Evaluating the Effects of K-means Clustering Approach on Medical Images
    Moftah, Hossam M.
    Elmasry, Walaa H.
    El-Bendary, Nashwa
    Hassanien, Aboul Ella
    Nakamatsu, Kazumi
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 455 - 459
  • [40] Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering
    Nawaz, Marriam
    Mehmood, Zahid
    Nazir, Tahira
    Naqvi, Rizwan Ali
    Rehman, Amjad
    Iqbal, Munwar
    Saba, Tanzila
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2022, 85 (01) : 339 - 351