Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:2
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2022年
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [21] TABULAR K-MEANS CLUSTERING ON REMOTE SENSING IMAGES
    Tsai, Victor J. D.
    Tsui, C. K.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6967 - 6970
  • [22] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [23] Customer segmentation using k-means clustering for developing sustainable marketing strategies
    Gautam, Nidhi
    Kumar, Nitin
    BIZNES INFORMATIKA-BUSINESS INFORMATICS, 2022, 16 (01): : 72 - 82
  • [24] Identification of Giemsa Staind of Malaria Using K-Means Clustering Segmentation Technique
    Haryanto, Edy Victor S.
    Mashor, M. Y.
    Nasir, A. S. Abdul
    Mohamed, Zeehaida
    2018 6TH INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT (CITSM), 2018, : 268 - 271
  • [25] Segmentation of Breast Ultrasound Image Using Regularized K-Means (ReKM) Clustering
    Samundeeswari, E. S.
    Saranya, P. K.
    Manavalan, R.
    PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 1379 - 1383
  • [26] Discovering Knowledge by Comparing Silhouettes Using K-Means Clustering for Customer Segmentation
    Akbar, Zeeshan
    Liu, Jun
    Latif, Zahida
    INTERNATIONAL JOURNAL OF KNOWLEDGE MANAGEMENT, 2020, 16 (03) : 70 - 88
  • [27] Classification of Leukocyte Images Using K-Means Clustering Based on Geometry Features
    Rosyadi, Tsalis
    Arif, Agus
    Nopriadi
    Achmad, Balza
    Faridah
    2016 6TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2016, : 245 - 249
  • [28] Parallel K-Means Clustering for Brain Cancer Detection Using Hyperspectral Images
    Torti, Emanuele
    Florimbi, Giordana
    Castelli, Francesca
    Ortega, Samuel
    Fabelo, Himar
    Callico, Gustavo Marrero
    Marrero-Martin, Margarita
    Leporati, Francesco
    ELECTRONICS, 2018, 7 (11)
  • [29] Music and timbre segmentation by recursive constrained K-means clustering
    Sebastian Krey
    Uwe Ligges
    Friedrich Leisch
    Computational Statistics, 2014, 29 : 37 - 50
  • [30] Music and timbre segmentation by recursive constrained K-means clustering
    Krey, Sebastian
    Ligges, Uwe
    Leisch, Friedrich
    COMPUTATIONAL STATISTICS, 2014, 29 (1-2) : 37 - 50