Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:2
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2022年
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [1] A Study on the Segmentation and Classification of Diabetic Retinopathy Images Using the K-Means Clustering Method
    Incir, Ramazan
    Bozkurt, Ferhat
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [2] Segmentation of peen forming patterns using k-means clustering
    Sushitskii, Vladislav
    Miao, Hong Yan
    Levesque, Martin
    Gosselin, Frederick P.
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 119 : 867 - 877
  • [3] Region Growing Segmentation with Iterative K-means For CT Liver Images
    Mostafa, Abdalla
    Abd Elfattah, Mohamed
    Fouad, Ahmed
    Hassanien, Aboul Ella
    Hefny, Hesham
    Kim, Tai-hoon
    2015 4TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGY AND SENSOR APPLICATION (AITS), 2015, : 88 - 91
  • [4] Infected Fruit Part Detection using K-Means Clustering Segmentation Technique
    Dubey, Shiv Ram
    Dixit, Pushkar
    Singh, Nishant
    Gupta, Jay Prakash
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2013, 2 (02): : 65 - 72
  • [5] Comparison of k-means related clustering methods for Nuclear Medicine images segmentation
    Borys, Damian
    Bzowski, Pawel
    Danch-Wierzchowska, Marta
    Psiuk-Maksymowicz, Krzysztof
    NINTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2016), 2017, 10341
  • [6] SEGMENTATION OF LUNG CANCER IMAGES WITH THRESHOLD TECHNIQUE COMPARED WITH K-MEANS CLUSTERING
    Kumar, T. Pavan
    Baskar, Radhika
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (03) : 5714 - 5722
  • [7] Colour transformations and K-means segmentation for automatic cloud detection
    Blazek, Martin
    Pata, Petr
    METEOROLOGISCHE ZEITSCHRIFT, 2015, 24 (05) : 503 - 509
  • [8] Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method
    Rim, Beanbonyka
    Lee, Sungjin
    Lee, Ahyoung
    Gil, Hyo-Wook
    Hong, Min
    SENSORS, 2021, 21 (08)
  • [9] Brain Tumor Segmentation Using Deep Learning and Fuzzy K-Means Clustering for Magnetic Resonance Images
    Pitchai, R.
    Supraja, P.
    Victoria, A. Helen
    Madhavi, M.
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2519 - 2532
  • [10] K-means Clustering Using R A Case Study of Market Segmentation
    Phan Duy Hung
    Nguyen Duc Ngoc
    Tran Duc Hanh
    PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON E-BUSINESS AND APPLICATIONS (ICEBA 2019), 2019, : 100 - 104