A singular value inequality for Heinz means

被引:25
作者
Audenaert, Koenraad M. R. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
基金
英国工程与自然科学研究理事会;
关键词
matrix inequality; singular value; matrix monotone function; matrix mean; MATRICES;
D O I
10.1016/j.laa.2006.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a matrix inequality for matrix monotone functions, and apply it to prove a singular value inequality for Heinz means recently conjectured by Zhan. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 50 条
  • [41] Some singular value inequalities via convexity
    Leka, Zoltan
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (02) : 360 - 369
  • [42] On eigenvalue, singular value and norm of symmetric matrices
    Ipek, Ahmet
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (04) : 689 - 696
  • [43] A SENSITIVITY ANALYSIS OF INVERSE SINGULAR VALUE PROBLEMS
    Shen, Wei-Ping
    Guu, Sy-Ming
    Li, Chong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (05) : 945 - 956
  • [44] Newton-type methods for inverse singular value problems with multiple singular values
    Shen, Wei-ping
    Li, Chong
    Jin, Xiao-qing
    Yao, Jen-chih
    APPLIED NUMERICAL MATHEMATICS, 2016, 109 : 138 - 156
  • [45] Singular value inequalities for submultiplicative and subadditive functions of matrices
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    POSITIVITY, 2024, 28 (03)
  • [46] Bound for the largest singular value of nonnegative rectangular tensors
    He, Jun
    Liu, Yan-Min
    Ke, Hua
    Tian, Jun-Kang
    Li, Xiang
    OPEN MATHEMATICS, 2016, 14 : 761 - 766
  • [47] A smallest singular value method for nonlinear eigenvalue problems
    Sadkane, Miloud
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (01) : 16 - 28
  • [48] Singular value and norm inequalities for positive semidefinite matrices
    Al-Natoor, Ahmad
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) : 4498 - 4507
  • [49] Universality of the least singular value for sparse random matrices
    Che, Ziliang
    Lopatto, Patrick
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [50] An alternating direction power-method for computing the largest singular value and singular vectors of a matrix
    Duan, Yonghong
    Wen, Ruiping
    AIMS MATHEMATICS, 2022, 8 (01): : 1127 - 1138