A singular value inequality for Heinz means

被引:26
作者
Audenaert, Koenraad M. R. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
基金
英国工程与自然科学研究理事会;
关键词
matrix inequality; singular value; matrix monotone function; matrix mean; MATRICES;
D O I
10.1016/j.laa.2006.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a matrix inequality for matrix monotone functions, and apply it to prove a singular value inequality for Heinz means recently conjectured by Zhan. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 7 条
[1]   Interpolating the arithmetic-geometric mean inequality and its operator version [J].
Bhatia, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (2-3) :355-363
[2]   Notes on matrix arithmetic-geometric mean inequalities [J].
Bhatia, R ;
Kittaneh, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :203-211
[3]   MORE MATRIX-FORMS OF THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY [J].
BHATIA, R ;
DAVIS, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (01) :132-136
[4]  
BHATIA R., 1997, Matrix Analysis
[5]   More results on singular value inequalities of matrices [J].
Tao, Yunxing .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (2-3) :724-729
[6]  
ZHAN X, 2002, LNM, V1790
[7]   Some research problems on the Hadamard product and singular values of matrices [J].
Zhan, XZ .
LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (02) :191-194