Golden-Hessian Structures

被引:19
作者
Gezer, Aydin [1 ]
Karaman, Cagri [1 ]
机构
[1] Ataturk Univ, Fac Sci, Dept Math, TR-25240 Erzurum, Turkey
关键词
Decomposable and holomorphic tensors; Golden structure; Hessian metric; Pure tensor; INTEGRABILITY; GEOMETRY; RATIO;
D O I
10.1007/s40010-015-0226-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let (M, g) be an n-dimensional (pseudo)-Riemannian manifold and f : M -> R be a smooth function whose Hessian with respect to g is non-degenerate. One can define the associated (pseudo)-Riemannian Hessian metric h - del(2)f on M, where del is the Levi-Civita connection of g. In the present paper we investigate conditions under which the manifold M equipped with a (complex) golden structure and with the Hessian metric h is a (holomorphic) locally decomposable golden (Norden) Hessian manifold. Furthermore some examples are presented.
引用
收藏
页码:41 / 46
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2013, CONVEX FUNCTIONS OPT
[2]  
Bercu G, 2009, J ADV MATH STUD, V2, P9
[3]  
Bercu G, 2006, BALK J GEOM APPL, V11, P23
[4]  
Bercu G, 2011, U POLITEH BUCH SER A, V73, P63
[5]  
Bradley S, 2000, FIBONACCI QUART, V38, P174
[6]  
Cheng S.Y., 1982, P 1980 BEIJ S DIFF G, V1, P339
[7]   Golden differential geometry [J].
Crasmareanu, Mircea ;
Hretcanu, Cristina-Elena .
CHAOS SOLITONS & FRACTALS, 2008, 38 (05) :1229-1238
[8]   Periodic continued fraction representations of different quark's mass ratios [J].
Crnjac, LM .
CHAOS SOLITONS & FRACTALS, 2005, 25 (04) :807-814
[9]   The metallic means family and multifractal spectra [J].
de Spinadel, VW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) :721-745
[10]  
Duistermaat J. J., 2001, Asian J. Math., V5, P79