Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati-Bernoulli sub-ODE method and Kudryashov's scheme

被引:54
作者
Mirzazadeh, Mohammad [1 ]
Alqahtani, Rubayyi T. [2 ]
Biswas, Anjan [2 ,3 ]
机构
[1] Univ Guilan, Dept Engn Sci, Fac Engn & Technol, PC 44891-63157, Rudsar Vajargah, Iran
[2] Al Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13318, Saudi Arabia
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
来源
OPTIK | 2017年 / 145卷
关键词
Solitons; Integrability; Quadratic-cubic nonlinearity;
D O I
10.1016/j.ijleo.2017.07.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper obtains soliton solutions to the perturbed nonlinear Schrodinger's equation with quadratic-cubic nonlinearity. Two integration algorithms are employed. They are RiccatiBernoulli sub-ODE method and Kudryashov's scheme. This leads to dark, singular and several other forms of soliton solutions that are being reported for the first time in this paper. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 9 条
[1]   Optical and other solitons for the fourth-order dispersive nonlinear Schrodinger equation with dual-power law nonlinearity [J].
Al Qurashi, Maysaa Mohamed ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa ;
Inc, Mustafa .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 105 :183-197
[2]  
Asian E. C., 2017, WAVES RANDOM COMPLEX
[3]  
Asma M., 2017, P ROM ACA A IN PRESS
[4]  
Asma M., 2017, OPTICAL SOLITO UNPUB
[5]   Chaotic solitons in the quadratic-cubic nonlinear Schrodinger equation under nonlinearity management [J].
Fujioka, J. ;
Cortes, E. ;
Perez-Pascual, R. ;
Rodriguez, R. F. ;
Espinosa, A. ;
Malomed, B. A. .
CHAOS, 2011, 21 (03)
[6]   Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities [J].
Hosseini, K. ;
Mayeli, P. ;
Ansari, R. .
OPTIK, 2017, 130 :737-742
[7]  
Korkmaz A., 2016, ARXIV161107086V2NLIN
[8]   Soliton solutions and conservation laws for lossy nonlinear transmission line equation [J].
Tchier, Fairouz ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa ;
Inc, Mustafa .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 107 :320-336
[9]   A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application [J].
Yang, Xiao-Feng ;
Deng, Zi-Chen ;
Wei, Yi .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,