Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications

被引:494
作者
Cui, Yong [1 ,2 ]
Wang, Yuming [3 ]
Bergqvist, Jonas [3 ]
Yao, Huifeng [1 ]
Xu, Ye [1 ,2 ]
Gao, Bowei [1 ,2 ]
Yang, Chenyi [4 ]
Zhang, Shaoqing [4 ]
Inganas, Olle [3 ]
Gao, Feng [3 ]
Hou, Jianhui [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, State Key Lab Polymer Phys & Chem, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem & Chem Engn, Beijing, Peoples R China
[3] Linkoping Univ, Dept Phys Chem & Biol, Linkoping, Sweden
[4] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing, Peoples R China
基金
瑞典研究理事会; 中国国家自然科学基金;
关键词
OPEN-CIRCUIT VOLTAGE; SOLAR-CELLS; POLYMER; EFFICIENCY; INTERNET; THINGS;
D O I
10.1038/s41560-019-0448-5
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic photovoltaic cells are potential candidates to drive low power consumption off-grid electronics for indoor applications. However, their power conversion efficiency is still limited by relatively large losses in the open-circuit voltage and a non-optimal absorption spectrum for indoor illumination. Here, we carefully designed a non-fullerene acceptor named IO-4CI and blend it with a polymer donor named PBDB-TF to obtain a photoactive layer whose absorption spectrum matches that of indoor light sources. The photovoltaic characterizations reveal a low energy loss below 0.60 eV. As a result, the organic photovoltaic cell (1 cm(2)) shows a power conversion efficiency of 26.1% with an open-circuit voltage of 1.10 V under a light-emitting diode illumination of 1,000 lux (2,700 K). We also fabricated a large-area cell (4 cm(2)) through the blade-coating method. Our cell shows an excellent stability, maintaining its initial photovoltaic performance under continuous illumination of the indoor light source for 1,000 hours.
引用
收藏
页码:768 / 775
页数:8
相关论文
共 47 条
[1]   Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications [J].
Al-Fuqaha, Ala ;
Guizani, Mohsen ;
Mohammadi, Mehdi ;
Aledhari, Mohammed ;
Ayyash, Moussa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (04) :2347-2376
[2]  
[Anonymous], 2018, ADV MAT
[3]   Photovoltaic performance of Organic Photovoltaics for indoor energy harvester [J].
Aoki, Yoichi .
ORGANIC ELECTRONICS, 2017, 48 :194-197
[4]   The Internet of Things: A survey [J].
Atzori, Luigi ;
Iera, Antonio ;
Morabito, Giacomo .
COMPUTER NETWORKS, 2010, 54 (15) :2787-2805
[5]   Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics [J].
Cao, Yiming ;
Liu, Yuhang ;
Zakeeruddin, Shaik Mohammed ;
Hagfeldt, Anders ;
Gratzel, Michael .
JOULE, 2018, 2 (06) :1108-1117
[6]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[7]   Indoor light recycling: a new home for organic photovoltaics [J].
Cutting, Christie L. ;
Bag, Monojit ;
Venkataraman, D. .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (43) :10367-10370
[8]   Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting [J].
De Rossi, Francesca ;
Pontecorvo, Tadeo ;
Brown, Thomas M. .
APPLIED ENERGY, 2015, 156 :413-422
[9]   Open circuit voltage of organic solar cells: an in-depth review [J].
Elumalai, Naveen Kumar ;
Uddin, Ashraf .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :391-410
[10]  
Freitag M, 2017, NAT PHOTONICS, V11, P372, DOI [10.1038/nphoton.2017.60, 10.1038/NPHOTON.2017.60]