Stability results for backward time-fractional parabolic equations

被引:29
作者
Dinh Nho Hao [1 ]
Liu, Jijun [2 ]
Nguyen Van Duc [3 ]
Nguyen Van Thang [3 ]
机构
[1] VAST, Hanoi Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[2] Southeast Univ, ST Yau Ctr, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Vinh Univ, Dept Math, Vinh City, Vietnam
关键词
backward time-fractional parabolic equations; stability estimates; non-local boundary value problem method; BOUNDARY VALUE METHOD; REGULARIZATION;
D O I
10.1088/1361-6420/ab45d3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal order stability estimates of Hlder type for the backward Caputo time-fractional abstract parabolic equations are obtained. This ill-posed problem is regularized by a non-local boundary value problem method with a priori and a posteriori parameter choice rules which guarantee error estimates of Hlder type. Numerical implementations are presented to show the validity of the proposed scheme.
引用
收藏
页数:25
相关论文
共 19 条
[11]   Optimality for ill-posed problems under general source conditions [J].
Tautenhahn, U .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (3-4) :377-398
[12]   Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation [J].
Wang, Jun-Gang ;
Wei, Ting ;
Zhou, Yu-Bin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :277-292
[13]   Tikhonov regularization method for a backward problem for the time-fractional diffusion equation [J].
Wang, Jun-Gang ;
Wei, Ting ;
Zhou, Yu-Bin .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (18-19) :8518-8532
[14]   A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem [J].
Wang, Jun-Gang ;
Zhou, Yu-Bin ;
Wei, Ting .
APPLIED MATHEMATICS LETTERS, 2013, 26 (07) :741-747
[15]   Total variation regularization for a backward time-fractional diffusion problem [J].
Wang, Liyan ;
Liu, Jijun .
INVERSE PROBLEMS, 2013, 29 (11)
[16]   Data regularization for a backward time-fractional diffusion problem [J].
Wang, Liyan ;
Liu, Jijun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) :3613-3626
[17]   A MODIFIED QUASI-BOUNDARY VALUE METHOD FOR THE BACKWARD TIME-FRACTIONAL DIFFUSION PROBLEM [J].
Wei, Ting ;
Wang, Jun-Gang .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02) :603-621
[18]   Fourier regularization for a final value time-fractional diffusion problem [J].
Yang, Ming ;
Liu, Jijun .
APPLICABLE ANALYSIS, 2015, 94 (07) :1508-1526
[19]   Solving a final value fractional diffusion problem by boundary condition regularization [J].
Yang, Ming ;
Liu, Jijun .
APPLIED NUMERICAL MATHEMATICS, 2013, 66 :45-58