Analysis for the Robust H∞ Synchronization of Nonlinear Stochastic Coupling Networks Through Poisson Processes and Core Coupling Design

被引:14
作者
Ho, Shih-Ju [1 ]
Chen, Chun-Yuan [1 ]
Chen, Bor-Sen [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Lab Control & Syst Biol, Hsinchu 30013, Taiwan
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2017年 / 4卷 / 02期
关键词
Asymptotical synchronizability in probability; core coupling design; Poisson process; robust synchronizability; CHAOTIC LURE SYSTEMS; MULTIAGENT SYSTEMS; DYNAMICAL NETWORKS; COMPLEX NETWORKS; CONSENSUS; STABILIZATION;
D O I
10.1109/TCNS.2015.2489340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss a robust synchronization problem for nonlinear stochastic coupling networks through Poisson processes. The asymptotical synchronizability in probability is examined via the Hamilton-Jacobi inequality (HJI) criterion. Further, in order to effectively filter external disturbances of the nonlinear stochastic coupling networks, synchronization robustness can be guaranteed by solving an HJI. In other words, by solving two HJI criteria, both the asymptotical synchronizability and the robust synchronizability in probability are guaranteed. To simplify the HJI criteria, a linear matrix inequality criterion is imposed, allowing for robust H-infinity synchronization based on the Takagi-Sugeno fuzzy model. Finally, we propose a recursive algorithm for the core coupling design by deleting the redundant Poisson couplings of the coupling networks while maintaining its asymptotical synchronizability in probability and synchronization robustness. A simulation example is provided to illustrate the core coupling design procedure and verify the robust synchronizability.
引用
收藏
页码:223 / 235
页数:13
相关论文
共 52 条
[1]  
[Anonymous], 2014, SYNTHETIC GENE NETWO
[2]   Synchronization and Consensus in State-Dependent Networks [J].
Bogojeska, Aleksandra ;
Mirchev, Miroslav ;
Mishkovski, Igor ;
Kocarev, Ljupco .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (02) :522-529
[3]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[4]   Robust Scheduling Filter Design for a Class of Nonlinear Stochastic Poisson Signal Systems [J].
Chen, Bor-Sen ;
Wu, Chien-Feng .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) :6245-6257
[5]   Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing [J].
Chen, Bor-Sen ;
Hsu, Chih-Yuan .
BMC SYSTEMS BIOLOGY, 2012, 6
[6]   Robust H∞ Synchronization Design of Nonlinear Coupled Network via Fuzzy Interpolation Method [J].
Chen, Bor-Sen ;
Chiang, Ching-Han ;
Nguang, Sing Kiong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (02) :349-362
[7]   A systematic design method for robust synthetic biology to satisfy design specifications [J].
Chen, Bor-Sen ;
Wu, Chih-Hung .
BMC SYSTEMS BIOLOGY, 2009, 3
[8]   Robust H2/H∞ Global Linearization Filter Design for Nonlinear Stochastic Systems [J].
Chen, Bor-Sen ;
Chen, Wen-Hao ;
Wu, Hsuan-Liang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (07) :1441-1454
[9]   Robust stabilization design for nonlinear stochastic system with Poisson noise via fuzzy interpolation method [J].
Chen, Wen-Hao ;
Chen, Bor-Sen .
FUZZY SETS AND SYSTEMS, 2013, 217 :41-61
[10]  
Chung FRK, 1997, Spectral Graph Theory