S-scheme heterojunction photocatalysts for CO2 reduction

被引:321
作者
Wang, Linxi [1 ]
Zhu, Bicheng [1 ]
Zhang, Jianjun [1 ]
Ghasemi, Jahan B. [2 ]
Mousavi, Mitra [2 ]
Yu, Jiaguo [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, Wuhan 430074, Hubei, Peoples R China
[2] Univ Tehran, Sch Sci, Fac Chem, Tehran 1417614335, Iran
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE CAPTURE; AMINE; WATER; ELECTRON; OXIDATION; CATALYSTS; METHANOL; SURFACE;
D O I
10.1016/j.matt.2022.09.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Step-scheme (S-scheme) heterojunctions have been widely applied in photocatalytic CO2 reduction because they facilitate the spatial separation of photogenerated carriers and maximize the redox powers of photocatalysts. The S-scheme heterojunction promotes the recombination of useless photogenerated charge carriers and preserves the useful ones for photocatalytic redox reactions. Various popular photocatalysts, such as metal oxides, metal chalcogenides, graphitic carbon nitrides, and bismuth oxyhalides, have been used to construct S-scheme heterojunctions and displayed improved CO2-reduction performance. To summarize the recent advances in this burgeoning field, this review discusses popular photocatalyticmaterials to constitute S-scheme heterojunctions for CO2 reduction. In the review, the fundamentals of S-scheme photocatalytic mechanisms are introduced. Then, the influence of S-scheme heterojunctions and selected photocatalysts on promoting photocatalytic CO2 reduction are highlighted. Lastly, challenges and prospects are discussed to motivate future studies on developing novel, high-performance S-scheme photocatalysts and studying the corresponding photocatalytic mechanisms.
引用
收藏
页码:4187 / 4211
页数:25
相关论文
共 121 条
[1]   Recent developments in complex metal oxide photoelectrodes [J].
Abdi, Fatwa F. ;
Berglund, Sean P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (19)
[2]   A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator [J].
Abe, R ;
Sayama, K ;
Domen, K ;
Arakawa, H .
CHEMICAL PHYSICS LETTERS, 2001, 344 (3-4) :339-344
[3]   Photocatalytic CO2 Reduction to C2+Products [J].
Albero, Josep ;
Peng, Yong ;
Garcia, Hermenegildo .
ACS CATALYSIS, 2020, 10 (10) :5734-5749
[4]  
[Anonymous], 2015, STANDARD TEST METHOD, DOI [DOI 10.1520/C0143_C0143M-20, 10.1016/j.scitotenv.2019.133628, DOI 10.1520/C0143]
[5]  
[Anonymous], 2016, Standard Specification for Concrete Aggregates, DOI [DOI 10.1520/C0033_C0033M-16, 10.1016/J.ENVPOL.2016.10.004]
[6]   S-Scheme Photocatalytic Systems [J].
Bao, Yujie ;
Song, Shaoqing ;
Yao, Guojian ;
Jiang, Shujuan .
SOLAR RRL, 2021, 5 (07)
[7]   PHOTOELECTROCHEMISTRY AND HETEROGENEOUS PHOTOCATALYSIS AT SEMICONDUCTORS [J].
BARD, AJ .
JOURNAL OF PHOTOCHEMISTRY, 1979, 10 (01) :59-75
[8]   CAPPED SEMICONDUCTOR COLLOIDS - SYNTHESIS AND PHOTOELECTROCHEMICAL BEHAVIOR OF TIO2-CAPPED SNO2 NANOCRYSTALLITES [J].
BEDJA, I ;
KAMAT, PV .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (22) :9182-9188
[9]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[10]   Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity [J].
Bhachu, Davinder S. ;
Moniz, Savio J. A. ;
Sathasivam, Sanjayan ;
Scanlon, David O. ;
Walsh, Aron ;
Bawaked, Salem M. ;
Mokhtar, Mohamed ;
Obaid, Abdullah Y. ;
Parkin, Ivan P. ;
Tang, Junwang ;
Carmalt, Claire J. .
CHEMICAL SCIENCE, 2016, 7 (08) :4832-4841