Consistency of heterogeneous synchronization patterns in complex weighted networks

被引:8
作者
Malagarriga, D. [1 ,2 ]
Villa, A. E. P. [3 ]
Garcia-Ojalvo, J. [4 ]
Pons, A. J. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis, Edifici Gaia,Rambla St Nebridi 22, Terrassa 08222, Spain
[2] Barcelona Biomed Res Pk PRBB, CRG, Dr Aiguader 88, Barcelona 08003, Spain
[3] Univ Lausanne, Fac Business & Econ, Neuroheurist Res Grp, CH-1015 Lausanne, Switzerland
[4] Univ Pompeu Fabra, Barcelona Biomed Res Pk PRBB, Dept Expt & Hlth Sci, Dr Aiguader 88, Barcelona 08003, Spain
基金
瑞士国家科学基金会;
关键词
PHASE SYNCHRONIZATION; DYNAMICS;
D O I
10.1063/1.4977972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronization within the dynamical nodes of a complex network is usually considered homogeneous through all the nodes. Here we show, in contrast, that subsets of interacting oscillators may synchronize in different ways within a single network. This diversity of synchronization patterns is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in small networks. We also analyze consistency, defined as the persistence of coexistent synchronization patterns regardless of the initial conditions. Our results show that complex weighted networks display richer consistency than regular networks, suggesting why certain functional network topologies are often constructed when experimental data are analyzed. (C) 2017 Author(s).
引用
收藏
页数:9
相关论文
共 38 条
  • [1] Generalized synchronization of chaos: The auxiliary system approach
    Abarbanel, HDI
    Rulkov, NF
    Sushchik, MM
    [J]. PHYSICAL REVIEW E, 1996, 53 (05) : 4528 - 4535
  • [2] Chimera states for coupled oscillators
    Abrams, DM
    Strogatz, SH
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (17) : 174102 - 1
  • [3] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [4] Complex dynamics and phase synchronization in spatially extended ecological systems
    Blasius, B
    Huppert, A
    Stone, L
    [J]. NATURE, 1999, 399 (6734) : 354 - 359
  • [5] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [6] Complex brain networks: graph theoretical analysis of structural and functional systems
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) : 186 - 198
  • [7] An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
    Cabessa, Jeremie
    Villa, Alessandro E. P.
    [J]. PLOS ONE, 2014, 9 (04):
  • [8] Synchronization is enhanced in weighted complex networks
    Chavez, M
    Hwang, DU
    Amann, A
    Hentschel, HGE
    Boccaletti, S
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (21)
  • [9] Assessing the direction of climate interactions by means of complex networks and information theoretic tools
    Deza, J. I.
    Barreiro, M.
    Masoller, C.
    [J]. CHAOS, 2015, 25 (03)
  • [10] Scale-free brain functional networks -: art. no. 018102
    Eguíluz, VM
    Chialvo, DR
    Cecchi, GA
    Baliki, M
    Apkarian, AV
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (01)