Some systems of multivariable orthogonal q-Racah polynomials

被引:74
作者
Gasper, George [1 ]
Rahman, Mizan
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
multivariable discrete orthogonal polynomials; multivariable basic hypergeometric orthogonal polynomials; several variables; multivariable q-Racah; q-Hahn; dual q-Hahn; q-Krawtchouk; q-Meixner; q-Charlier polynomials;
D O I
10.1007/s11139-006-0259-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1991 Tratnik derived two systems of multivariable orthogonal Racah polynomials and considered their limit cases. q-Extensions of these systems are derived, yielding systems of multivariable orthogonal q-Racah polynomials, from which systems of multivariable orthogonal q-Hahn, dual q-Hahn, q-Krawtchouk, q-Meixner, and q-Charlier polynomials follow as special or limit cases.
引用
收藏
页码:389 / 405
页数:17
相关论文
共 26 条
[1]   SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAH COEFFICIENTS OR 6-J SYMBOLS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :1008-1016
[2]  
Askey R, 1985, MEMOIRS AM MATH SOC, V319
[3]  
Dunkl C F., 2001, Orthogonal polynomials of several variables
[4]   ORTHOGONAL POLYNOMIALS IN 2 VARIABLES OF Q-HAHN AND Q-JACOBI TYPE [J].
DUNKL, CF .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (02) :137-151
[5]   NONNEGATIVE KERNELS IN PRODUCT-FORMULAS FOR Q-RACAH POLYNOMIALS .1. [J].
GASPER, G ;
RAHMAN, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 95 (02) :304-318
[6]  
Gasper G, 2005, DEV MATH, V13, P185
[7]  
Gasper G, 2005, DEV MATH, V13, P209
[8]   PRODUCT-FORMULAS OF WATSON, BAILEY AND BATEMAN TYPES AND POSITIVITY OF THE POISSON KERNEL FOR Q-RACAH POLYNOMIALS [J].
GASPER, G ;
RAHMAN, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :768-789
[9]  
Gasper G, 2004, BASIC HYPERGEOMETRIC
[10]  
Gasper G., 1975, THEORY APPL SPECIAL, P375