The Fourier-Nitsche-mortaring for elliptic problems with reentrant edges

被引:2
作者
Heinrich, B. [1 ]
Jung, B. [1 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
Poisson equation; edge singularity; Fourier method; finite-element method; non-matching meshes; Nitsche-mortaring;
D O I
10.1007/s00607-007-0226-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Fourier method is combined with the Nitsche-finite-element method (as a mortar method) and applied to the Dirichlet problem of the Poisson equation in three-dimensional axisymmetric domains with reentrant edges generating singularities. The approximating Fourier method yields a splitting of the 3D problem into a set of 2D problems on the meridian plane of the given domain. For solving the 2D problems bearing corner singularities, the Nitsche-finite-element method with non-matching meshes and mesh grading near reentrant corners is applied. Using the explicit representation of some singularity function of non-tensor product type, the rate of convergence of the Fourier-Nitsche-mortaring is estimated in some H-1-like norm as well as in the L-2-norm for weak regularity of the solution. Finally, some numerical results are presented.
引用
收藏
页码:221 / 246
页数:26
相关论文
共 26 条
  • [1] ARNOLD DN, 1999, DISCONTINUOUS GALERK, P89
  • [2] A finite element method for domain decomposition with non-matching grids
    Becker, R
    Hansbo, P
    Stenberg, R
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02): : 209 - 225
  • [3] Ben Belgacem F, 1999, NUMER MATH, V84, P173, DOI 10.1007/s002119900100
  • [4] Bernardi C., 1999, Spectral Methods for Axisymetric Domain
  • [5] BERNSTEIN ZP, 1994, P AN M AM SOC CLIN, V13, P51
  • [6] Blum H., 1988, FINITE ELEMENT BOUND, P172
  • [7] Butzer P. L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, VI
  • [8] CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
  • [9] A comparison of mortar and Nitsche techniques for linear elasticity
    Fritz, A
    Hüeber, S
    Wohlmuth, BI
    [J]. CALCOLO, 2004, 41 (03) : 115 - 137
  • [10] Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24