Quaternionic Aharonov-Bohm Effect

被引:16
作者
Giardino, Sergio [1 ,2 ]
机构
[1] Univ Beira Interior, Dept Fis, Rua Marques DAvila & Bolama, P-6200001 Covilha, Portugal
[2] Univ Beira Interior, Ctr Matemat & Aplicacoes, Rua Marques DAvila & Bolama, P-6200001 Covilha, Portugal
关键词
QUANTUM-MECHANICS;
D O I
10.1007/s00006-017-0766-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quaternionic analog of the Aharonov-Bohm effect is developed without the usual anti-hermitian operators in quaternionic quantum mechanics. A quaternionic phase links the solutions obtained to ordinary complex wave functions, and new theoretical studies and experimental tests are possible for them.
引用
收藏
页码:2445 / 2456
页数:12
相关论文
共 20 条
[1]  
Adler S.L., 2016, ARXIV160404950QUANTP
[2]  
Adler SL., 1995, QUATERNIONIC QUANTUM
[3]  
[Anonymous], 2016, INTRO CLIFFORD ALGEB
[4]  
Atiyah M. F., 1979, Geometry on Yang-Mills fields
[5]   Experimental status of quaternionic quantum mechanics [J].
Brumby, SP ;
Joshi, GC .
CHAOS SOLITONS & FRACTALS, 1996, 7 (05) :747-752
[6]  
Davies A.J., 1989, PHYS REV A, V46, P3671
[7]   NONRELATIVISTIC QUATERNIONIC QUANTUM-MECHANICS IN ONE DIMENSION [J].
DAVIES, AJ ;
MCKELLAR, BHJ .
PHYSICAL REVIEW A, 1989, 40 (08) :4209-4214
[8]   Quaternionic bound states [J].
De Leo, S ;
Ducati, GC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (15) :3443-3454
[9]  
De Leo S, 2002, J PHYS A-MATH GEN, V35, P5411, DOI 10.1088/0305-4470/35/26/305
[10]   Quaternionic differential operators [J].
De Leo, S ;
Ducati, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (05) :2236-2265