A new C2 rational interpolation based on function values and constrained control of the interpolant curves

被引:36
作者
Duan, Q [1 ]
Wang, LQ
Twizell, EH
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
基金
中国国家自然科学基金;
关键词
curve design; rational spline; constrained interpolation; error estimation;
D O I
10.1016/j.amc.2003.12.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a new method is developed to create a high-order smoothness interpolation using values of the function being interpolated. This is a kind of rational cubic interpolation with quadratic denominator. This rational spline not only belongs to C-2 in the interpolating interval, but could also be used to constrain the shape of the interpolant curve such as to force it to be in the given region, all because of the selectable parameters in the rational spline itself. The more important achievement mathematically of this method is that the uniqueness of the interpolating function for the given data would be replaced by the uniqueness of the interpolating curve for the given data and the selected parameters. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 322
页数:12
相关论文
共 34 条
[1]  
Brodlie K., 1985, FUNDAMENTAL ALGORITH, P303
[2]   PRESERVING CONVEXITY USING PIECEWISE CUBIC INTERPOLATION [J].
BRODLIE, KW ;
BUTT, S .
COMPUTERS & GRAPHICS, 1991, 15 (01) :15-23
[3]  
Constantini P., 1997, ACM T MATH SOFTWARE, V23, P229
[4]  
DEVORE A, 1986, COMPUT AIDED GEOM D, V3, P205
[5]  
Dierckx P., 1989, Computer-Aided Geometric Design, V6, P279, DOI 10.1016/0167-8396(89)90029-0
[6]   Weighted rational cubic spline interpolation and its application [J].
Duan, Q ;
Djidjeli, K ;
Price, WG ;
Twizell, EH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (02) :121-135
[7]  
Duan Q, 2001, J COMPUT MATH, V19, P143
[8]  
Foley T. A., 1986, Computer-Aided Geometric Design, V3, P281, DOI 10.1016/0167-8396(86)90004-X
[9]   MONOTONE PIECEWISE CUBIC INTERPOLATION [J].
FRITSCH, FN ;
CARLSON, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :238-246
[10]   A METHOD FOR CONSTRUCTING LOCAL MONOTONE PIECEWISE CUBIC INTERPOLANTS [J].
FRITSCH, FN ;
BUTLAND, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02) :300-304