Dense Disparity Estimation Based on Feature Matching and IGMRF Regularization

被引:0
作者
Nahar, Sonam [1 ]
Joshi, Manjunath V. [2 ]
机构
[1] LNMIIT, Jaipur, Rajasthan, India
[2] DA IICT, Gandhinagar, India
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
关键词
BELIEF PROPAGATION; STEREO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new approach for dense disparity estimation in a global energy minimization framework. We combine the feature matching cost defined using the learned hierarchical features of given left and right stereo images, with the pixel-based intensity matching cost to form the data term. The features are learned in an unsupervised way using the deep deconvolutional network. Our regularization term consists of an inhomogeneous Gaussian markov random field (IGMRF) prior that captures the smoothness as well as preserves sharp discontinuities in the disparity map. An iterative two phase algorithm is proposed to minimize the energy function in order to estimate the dense disparity map. In phase one, IGMRF parameters are computed, keeping the disparity map fixed, and in phase two, the disparity map is refined by minimizing the energy function using graph cuts, with other parameters fixed. Experimental results on the Middlebury stereo benchmarks demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:3804 / 3809
页数:6
相关论文
共 22 条
  • [1] [Anonymous], MIDDLEBURY STEREO
  • [2] EFFICIENT REGISTRATION OF STEREO IMAGES BY MATCHING GRAPH DESCRIPTIONS OF EDGE SEGMENTS
    AYACHE, N
    FAVERJON, B
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1987, 1 (02) : 107 - 131
  • [3] Stereo Matching with Mumford-Shah Regularization and Occlusion Handling
    Ben-Ari, Rami
    Sochen, Nir
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (11) : 2071 - 2084
  • [4] Learning Deep Architectures for AI
    Bengio, Yoshua
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01): : 1 - 127
  • [5] A pixel dissimilarity measure that is insensitive to image sampling
    Birchfield, S
    Tomasi, C
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (04) : 401 - 406
  • [6] Fast approximate energy minimization via graph cuts
    Boykov, Y
    Veksler, O
    Zabih, R
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) : 1222 - 1239
  • [7] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [8] Hirschmüller H, 2008, IEEE T PATTERN ANAL, V30, P328, DOI 10.1109/TPAMl.2007.1166
  • [9] An adaptive Gaussian model for satellite image deblurring
    Jalobeanu, A
    Blanc-Féraud, L
    Zerubia, J
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) : 613 - 621
  • [10] What is the Best Multi-Stage Architecture for Object Recognition?
    Jarrett, Kevin
    Kavukcuoglu, Koray
    Ranzato, Marc'Aurelio
    LeCun, Yann
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 2146 - 2153