Diagonalization of nondiagonalizable discrete holomorphic dynamical systems

被引:21
作者
Abate, M
机构
关键词
D O I
10.1353/ajm.2000.0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall describe a canonical procedure to associate to any (germ of) holomorphic self-map F of C-n fixing the origin so that dF(O) is invertible and nondiagonalizable an n-dimensional complex manifold M, a holomorphic map pi: M --> C-n, a point e is an element of M and a (germ of) holomorphic self-map (F) over tilde of M such that: pi restricted to M \ pi(-1)(O) is a biholomorphism between M \ pi(-1)(O) and C-n \{O}; pi o (F) over tilde = Fo pi; and e is a fixed point of (F) over tilde such that d (F) over tilde(e) is diagonalizable. Furthermore, we shall use this construction to describe the local dynamics of such an F nearby me origin when sp (dF(O)) = {1}.
引用
收藏
页码:757 / 781
页数:25
相关论文
共 15 条
[1]  
ABATE M, 1999, BASINS ATTRACTION QU
[2]  
[Anonymous], PUBL MAT
[3]  
Coman D, 1998, HOUSTON J MATH, V24, P85
[4]  
Fatou P., 1924, ANN SCI ECOLE NORM S, V41, P67
[5]   Analytic transformations of (Cp,0) tangent to the identity [J].
Hakim, M .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (02) :403-428
[6]  
Hakim M., 1997, STABLE PIECES MANIFO
[7]   ANALYTIC AUTOMORPHISMS ADMITTING SUB-VARIETIES OF FIXED-POINTS DRAWN IN A TRANSVERSAL DIRECTION [J].
NISHIMURA, Y .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1983, 23 (02) :289-299
[9]  
RIVI M, 1999, STABLE MANIFOLDS SEM
[10]  
ROICH L, 1969, MATH ANN, V180, P233