Mitochondria Donation by Mesenchymal Stem Cells: Current Understanding and Mitochondria Transplantation Strategies

被引:60
作者
Gomzikova, Marina O. [1 ,2 ]
James, Victoria [3 ]
Rizvanov, Albert A. [1 ,2 ,3 ]
机构
[1] Kazan Fed Univ, Inst Fundamental Med & Biol, Kazan, Russia
[2] Russian Acad Sci, MM Shemyakin Yu A Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
[3] Univ Nottingham, Sch Vet Med & Sci, Nottingham, England
关键词
mitochondria donation; mitochondria transplantation; tunneling nanotubes; extracellular vesicles; cell fusion; isolated mitochondria;
D O I
10.3389/fcell.2021.653322
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The phenomenon of mitochondria donation is found in various tissues of humans and animals and is attracting increasing attention. To date, numerous studies have described the transfer of mitochondria from stem cells to injured cells, leading to increased ATP production, restoration of mitochondria function, and rescue of recipient cells from apoptosis. Mitochondria transplantation is considered as a novel therapeutic approach for the treatment of mitochondrial diseases and mitochondrial function deficiency. Mitochondrial dysfunction affects cells with high energy needs such as neural, skeletal muscle, heart, and liver cells and plays a crucial role in type 2 diabetes, as well as Parkinson's, Alzheimer's diseases, ischemia, stroke, cancer, and age-related disorders. In this review, we summarize recent findings in the field of mitochondria donation and mechanism of mitochondria transfer between cells. We review the existing clinical trials and discuss advantages and disadvantages of mitochondrial transplantation strategies based on the injection of stem cells, isolated functional mitochondria, or EVs containing mitochondria.
引用
收藏
页数:10
相关论文
共 92 条
[1]   Human Mesenchymal Stem Cells Reprogram Adult Cardiomyocytes Toward a Progenitor-Like State Through Partial Cell Fusion and Mitochondria Transfer [J].
Acquistapace, Adrien ;
Bru, Thierry ;
Lesault, Pierre-Francois ;
Figeac, Florence ;
Coudert, Amelie E. ;
le Coz, Olivier ;
Christov, Christo ;
Baudin, Xavier ;
Auber, Frederic ;
Yiou, Rene ;
Dubois-Rande, Jean-Luc ;
Rodriguez, Anne-Marie .
STEM CELLS, 2011, 29 (05) :812-824
[2]   Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy [J].
Ahmad, Tanveer ;
Mukherjee, Shravani ;
Pattnaik, Bijay ;
Kumar, Manish ;
Singh, Suchita ;
Kumar, Manish ;
Rehman, Rakhshinda ;
Tiwari, Brijendra K. ;
Jha, Kumar A. ;
Barhanpurkar, Amruta P. ;
Wani, Mohan R. ;
Roy, Soumya S. ;
Mabalirajan, Ulaganathan ;
Ghosh, Balaram ;
Agrawal, Anurag .
EMBO JOURNAL, 2014, 33 (09) :994-1010
[3]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[4]   Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells [J].
Babenko, Valentina A. ;
Silachev, Denis N. ;
Zorova, Liubava D. ;
Pevzner, Irina B. ;
Khutornenko, Anastasia A. ;
Plotnikov, Egor Y. ;
Sukhikh, Gennady T. ;
Zorov, Dmitry B. .
STEM CELLS TRANSLATIONAL MEDICINE, 2015, 4 (09) :1011-1020
[5]   Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies [J].
Bhatti, Jasvinder Singh ;
Bhatti, Gurjit Kaur ;
Reddy, P. Hemachandra .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2017, 1863 (05) :1066-1077
[6]   Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity [J].
Chang, Jui-Chih ;
Wu, Shey-Lin ;
Liu, Ko-Hung ;
Chen, Ya-Hui ;
Chuang, Chieh-Sen ;
Cheng, Fu-Chou ;
Su, Hong-Lin ;
Wei, Yau-Huei ;
Kuo, Shou-Jen ;
Liu, Chin-San .
TRANSLATIONAL RESEARCH, 2016, 170 :40-56
[7]   Functional Recovery of Human Cells Harbouring the Mitochondrial DNA Mutation MERRF A8344G via Peptide-Mediated Mitochondrial Delivery [J].
Chang, Jui-Chih ;
Liu, Ko-Hung ;
Li, Yu-Chi ;
Kou, Shou-Jen ;
Wei, Yau-Huei ;
Chuang, Chieh-Sen ;
Hsieh, Mingli ;
Liu, Chin-San .
NEUROSIGNALS, 2013, 21 (3-4) :160-173
[8]   Umbilical Cord-Derived Mesenchymal Stem Cells Suppress Autophagy of T Cells in Patients with Systemic Lupus Erythematosus via Transfer of Mitochondria [J].
Chen, Jinyun ;
Wang, Qian ;
Feng, Xuebing ;
Zhang, Zhuoya ;
Geng, Linyu ;
Xu, Ting ;
Wang, Dandan ;
Sun, Lingyun .
STEM CELLS INTERNATIONAL, 2016, 2016
[9]   Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually No Mitochondrial Function but Not with Pathogenic mtDNA Mutations [J].
Cho, Young Min ;
Kim, Ju Han ;
Kim, Mingoo ;
Park, Su Jin ;
Koh, Sang Hyeok ;
Ahn, Hyo Seop ;
Kang, Gyeong Hoon ;
Lee, Jung-Bin ;
Park, Kyong Soo ;
Lee, Hong Kyu .
PLOS ONE, 2012, 7 (03)
[10]   Mitochondrial Transfer from Wharton's Jelly Mesenchymal Stem Cell to MERRF Cybrid Reduces Oxidative Stress and Improves Mitochondrial Bioenergetics [J].
Chuang, Yao-Chung ;
Liou, Chia-Wei ;
Chen, Shang-Der ;
Wang, Pei-Wen ;
Chuang, Jiin-Haur ;
Tiao, Mao-Meng ;
Hsu, Te-Yao ;
Lin, Hung-Yu ;
Lin, Tsu-Kung .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2017, 2017