An economical two-step method with improved phase and stability properties for problems in chemistry

被引:0
作者
Medvedeva, Marina A. [1 ]
Simos, T. E. [2 ,3 ,4 ]
机构
[1] Ural Fed Univ, Mira 19, Ekaterinburg, Russia
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Dongtong Rd 705, Neijiang 641100, Peoples R China
[4] Democritus Univ Thrace, Sect Math, Dept Civil Engn, Xanthi, Greece
关键词
Phase-lag; Derivative of the phase-lag; Initial value problems; Oscillating solution; Symmetric; Hybrid; Multistep; Schrodinger equation; RUNGE-KUTTA METHODS; EXPONENTIAL-FITTING METHODS; INITIAL-VALUE PROBLEMS; P-STABLE METHODS; FITTED OBRECHKOFF METHODS; NOUMEROV-TYPE METHOD; NUMEROV-TYPE METHOD; ONE-STEP METHODS; NUMERICAL-SOLUTION; HIGH-ORDER;
D O I
10.1007/s10910-021-01260-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we develop a new ECO2STEP (Economical Two-Step Method) method with phase-lag and its derivatives up to order four equal to zero, for initial or boundary value problems with oscillating and/or periodical solutions with an application on problems in Quantum Chemistry. We call the new introduced method economical since it has achieved the highest possible algebraic order using the minimum number of function evaluations per step.
引用
收藏
页码:1704 / 1737
页数:34
相关论文
共 145 条
[1]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[2]  
Atkins P, 2011, Molecular Quantum Mechanics, Vfifth
[3]   THERMAL SCATTERING OF ATOMS BY HOMONUCLEAR DIATOMIC MOLECULES [J].
BERNSTEIN, RB ;
DALGARNO, A ;
MASSEY, H ;
PERCIVAL, IC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 274 (1356) :427-+
[5]  
Brugnano L., 2010, J. Numer. Anal. Ind. Appl. Math., V5, P17
[6]   Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) :387-398
[7]   Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (10) :732-744
[8]   Structure preservation of exponentially fitted Runge-Kutta methods [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) :421-434
[9]   On some new low storage implementations of time advancing Runge-Kutta methods [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) :3665-3675
[10]   Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (12) :2044-2056