On entropic dissipation rate without cutoff

被引:6
作者
Alexandre, R [1 ]
机构
[1] Univ Orleans, Dept Math, MAPMO UMR 1803, F-45067 Orleans 2, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 03期
关键词
D O I
10.1016/S0764-4442(97)82986-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, if a function has a bounded entropic dissipation rate, then it satisfies some regularity like estimates; this is done in linear and nonlinear 3D cases, without angular cutoff, and for power laws as 1/tau(s), with s > 2.
引用
收藏
页码:311 / 315
页数:5
相关论文
共 7 条
  • [1] On 3D Boltzmann linear operator without cutoff
    Alexandre, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (09): : 959 - 962
  • [2] ALEXANDRE R, 1998, C R ACAD SCI PARIS 1, V326
  • [3] Cercignani C, 1988, BOLTZMANN EQUATION I
  • [4] DIPERNA RJ, 1988, REND SEM MAT TORINO, V46, P729
  • [5] PETTERSON R, 1991, MATH MOD METH APPL S, V3, P259
  • [6] STEIN EM, 1970, SINGULAR INTEGRALS D
  • [7] Triebel H., 1992, MONOG MATH, V84