This paper presents the results of a study conducted to explore the use of small-scale models of accelerated pavement testing (APT) devices to evaluate the performance of pavements in conjunction with full scale tests. The motivation for the study was the availability of a model mobile load simulator (MMLS), which had been built originally to illustrate the operation of the full-scale mobile load simulator (MLS) under design at the time. The scaling requirements will be different depending on whether dynamic (inertia), viscous, or gravity effects are important. One must thus decide which one of these effects controls the behavior to try to reproduce it exactly. In the preliminary tests conducted with the MMLS, emphasis had been placed in reproducing accurately the viscoelastic behavior of the asphalt layer. The possibility of obtaining valid results, even if similitude is not maintained in relation to inertia forces, is explored in this paper. The effects of load frequency or velocity and the effects of layer thicknesses are studied. The total thickness of the model pavement, which must be finite, and its effects on displacements and strains are also considered. It is concluded that even when full similitude is not satisfied it is possible to obtain valid results that can be extrapolated to predict prototype performance if one were interested primarily in the behavior of the asphalt layer. Preliminary analyses should be conducted, however, to guide on the selection of the model dimensions.