RELATIVE PERTURBATION THEORY FOR DIAGONALLY DOMINANT MATRICES

被引:16
作者
Dailey, Megan [1 ]
Dopico, Froilan M. [2 ,3 ]
Ye, Qiang [4 ]
机构
[1] Indiana Univ Kokomo, Kokomo, IN 46904 USA
[2] Univ Carlos III Madrid, CSIC UAM UCM UC3M, Inst Ciencias Matemat, Leganes 28911, Spain
[3] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[4] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
accurate computations; diagonally dominant matrices; diagonally dominant parts; inverses; linear systems; eigenvalues; singular values; relative perturbation theory; SINGULAR-VALUE; BACKWARD ERROR; EIGENVALUE; BOUNDS; DECOMPOSITIONS; FACTORIZATION; EIGENVECTORS;
D O I
10.1137/130943613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, strong relative perturbation bounds are developed for a number of linear algebra problems involving diagonally dominant matrices. The key point is to parameterize diagonally dominant matrices using their off-diagonal entries and diagonally dominant parts and to consider small relative componentwise perturbations of these parameters. This allows us to obtain new relative perturbation bounds for the inverse, the solution to linear systems, the symmetric indefinite eigenvalue problem, the singular value problem, and the nonsymmetric eigenvalue problem. These bounds are much stronger than traditional perturbation results, since they are independent of either the standard condition number or the magnitude of eigenvalues/singular values. Together with previously derived perturbation bounds for the LDU factorization and the symmetric positive definite eigenvalue problem, this paper presents a complete and detailed account of relative structured perturbation theory for diagonally dominant matrices.
引用
收藏
页码:1303 / 1328
页数:26
相关论文
共 46 条
  • [1] CONVERGENCE PROPERTIES OF THE SPLINE FIT
    AHLBERG, JH
    NILSON, EN
    [J]. JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (01): : 95 - 104
  • [2] Alfa AS, 2002, NUMER MATH, V90, P401, DOI 10.1007/S002110100289
  • [3] Alfa AS, 2002, MATH COMPUT, V71, P217, DOI 10.1090/S0025-5718-01-01325-4
  • [4] [Anonymous], 1997, Applied numerical linear algebra
  • [5] COMPUTING ACCURATE EIGENSYSTEMS OF SCALED DIAGONALLY DOMINANT MATRICES
    BARLOW, J
    DEMMEL, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) : 762 - 791
  • [6] Linear perturbation theory for structured matrix pencils arising in control theory
    Bora, S
    Mehrmann, V
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (01) : 148 - 169
  • [7] STRUCTURED EIGENVALUE CONDITION NUMBER AND BACKWARD ERROR OF A CLASS OF POLYNOMIAL EIGENVALUE PROBLEMS
    Bora, Shreemayee
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) : 900 - 917
  • [8] ACCURATE SOLUTION OF STRUCTURED LEAST SQUARES PROBLEMS VIA RANK-REVEALING DECOMPOSITIONS
    Castro-Gonzalez, Nieves
    Ceballos, Johan
    Dopico, Froilan M.
    Molera, Juan M.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (03) : 1112 - 1128
  • [9] EFFECTIVELY WELL-CONDITIONED LINEAR-SYSTEMS
    CHAN, TF
    FOULSER, DE
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (06): : 963 - 969
  • [10] MULTIPLICATIVE PERTURBATION ANALYSIS FOR QR FACTORIZATIONS
    Chang, Xiao-Wen
    Li, Ren-Cang
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (02): : 301 - 316