On a problem of Pillai with Fibonacci numbers and powers of 2

被引:27
作者
Ddamulira, Mahadi [1 ]
Luca, Florian [2 ]
Rakotomalala, Mihaja [3 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Steyrergasse 30-2, A-8010 Graz, Austria
[2] Univ Witwatersrand, Sch Math, Private Bag X3, ZA-2050 Johannesburg, South Africa
[3] AIMS Ghana Biriwa, POB DL 676, Cape Coast, Central Region, Ghana
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2017年 / 127卷 / 03期
关键词
Fibonacci numbers; linear forms in logarithms; reduction method;
D O I
10.1007/s12044-017-0338-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find all integers c having at least two representations as a difference between a Fibonacci number and a power of 2.
引用
收藏
页码:411 / 421
页数:11
相关论文
共 8 条
[1]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[2]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[3]  
Herschfeld A., 1936, B AM MATH SOC, V42, P231, DOI 10.1090/S0002-9904-1936-06275-0
[4]  
Herschfeld A., 1935, B AM MATH SOC, V41, P631
[5]   An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II [J].
Matveev, EM .
IZVESTIYA MATHEMATICS, 2000, 64 (06) :1217-1269
[6]  
Pillai S.S., 1937, J. Indian Math. Soc. New Ser., V2, P215
[7]  
Pillai SS., 1936, J INDIAN MATH SOC, V2, P119
[8]  
Stroeker R J, 1982, Math. Centre Tracts, Math. Centrum, V155, P321