Gradient area-selective deposition for seamless gap-filling in 3D nanostructures through surface chemical reactivity control

被引:23
作者
Nguyen, Chi Thang [1 ]
Cho, Eun-Hyoung [2 ]
Gu, Bonwook [1 ]
Lee, Sunghee [2 ]
Kim, Hae-Sung [2 ]
Park, Jeongwoo [3 ]
Yu, Neung-Kyung [3 ]
Shin, Sangwoo [4 ]
Shong, Bonggeun [3 ]
Lee, Jeong Yub [2 ]
Lee, Han-Bo-Ram [1 ]
机构
[1] Incheon Natl Univ, Dept Mat Sci & Engn, Incheon 22012, South Korea
[2] Samsung Adv Inst Technol, Silicon Lab, Gyeonggi 16678, South Korea
[3] Hongik Univ, Dept Chem Engn, Seoul 04066, South Korea
[4] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
基金
新加坡国家研究基金会;
关键词
ATOMIC LAYER DEPOSITION; ELASTIC BAND METHOD; AB-INITIO; TIO2; FILMS; GROWTH; ALD; PRECURSORS; PHOTOCATALYSIS; INHIBITOR; STABILITY;
D O I
10.1038/s41467-022-35428-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integrating bottom-up and top-down fabrication techniques can overcome limits in nanofabrication. Here authors demonstrate an approach for area selective deposition using Ti as an inhibitor in the atomic layer deposition process to achieve controlled growth of seamless TiO2 layers on 3D structures. The integration of bottom-up fabrication techniques and top-down methods can overcome current limits in nanofabrication. For such integration, we propose a gradient area-selective deposition using atomic layer deposition to overcome the inherent limitation of 3D nanofabrication and demonstrate the applicability of the proposed method toward large-scale production of materials. Cp(CH3)(5)Ti(OMe)(3) is used as a molecular surface inhibitor to prevent the growth of TiO2 film in the next atomic layer deposition process. Cp(CH3)(5)Ti(OMe)(3) adsorption was controlled gradually in a 3D nanoscale hole to achieve gradient TiO2 growth. This resulted in the formation of perfectly seamless TiO2 films with a high-aspect-ratio hole structure. The experimental results were consistent with theoretical calculations based on density functional theory, Monte Carlo simulation, and the Johnson-Mehl-Avrami-Kolmogorov model. Since the gradient area-selective deposition TiO2 film formation is based on the fundamentals of molecular chemical and physical behaviours, this approach can be applied to other material systems in atomic layer deposition.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Quality factor in trench-refilled polysilicon beam resonators [J].
Abdolvand, Reza ;
Johari, Houri ;
Ho, Gavin K. ;
Erbil, Ahmet ;
Ayazi, Farrokh .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2006, 15 (03) :471-478
[2]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
[3]   Morphological and photoelectrochemical properties of ALD TiO2 films [J].
Cheng, Hsyi-En ;
Chen, Chia-Chuan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (09) :D604-D607
[4]   Modulation of the adsorption chemistry of a precursor in atomic layer deposition to enhance the growth per cycle of a TiO2 thin film [J].
Cho, Yeonchoo ;
Kim, Sang Hyeon ;
Kim, Byung Seok ;
Kim, Youngjin ;
Jeon, Woojin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (04) :2568-2574
[5]   Material platforms for optical metasurfaces [J].
Choudhury, Sajid M. ;
Wang, Di ;
Chaudhuri, Krishnakali ;
DeVault, Clayton ;
Kildishev, Alexander V. ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
NANOPHOTONICS, 2018, 7 (06) :959-987
[6]   Conformality in atomic layer deposition: Current status overview of analysis and modelling [J].
Cremers, Veronique ;
Puurunen, Riikka L. ;
Dendooven, Jolien .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[7]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[8]  
Filipovic L., 2019, 2019 INT C SIMULATIO, P1
[9]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[10]   SELECTIVE METALLIZATION BY CHEMICAL-VAPOR-DEPOSITION [J].
GLADFELTER, WL .
CHEMISTRY OF MATERIALS, 1993, 5 (10) :1372-1388