Scaling transformation and probability distributions for financial time series

被引:13
作者
Brachet, ME
Taflin, E
Tcheou, JM
机构
[1] ENS, Phys Stat Lab, CNRS URA 1306, F-75231 Paris 05, France
[2] AXA UAP, Direct Sci, F-75052 Paris, France
关键词
D O I
10.1016/S0960-0779(99)00159-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The price of financial assets are, since [Bachelier L. Annales de l'Ecole Normals Superieure 1900;3:XVII:21-86], considered to be described by a (discrete or continuous) time sequence of random variables, i.e., a stochastic process. Sharp scaling exponents or unifractal behavior of such processes has been reported in several works [Mandelbrot BE. J Business 1963;36:394-419; Peters EE. Chaos and order in the capital markets. New York: Wiley, 1991; Mantegna RN, Stanley HE. Nature 1995;376:46-49; Evertsz CJG. Fractals. 1995;3:609-616; Bouchaud JP, Putters M, Theorie des risques financiers, Alea Saclay, 1997]. In this paper we investigate the question of scaling transformation of price processes by establishing a new connection between non-linear group theoretical methods and multifractal methods developed in mathematical physics. Using two sets of financial chronological time series, we show that the scaling transformation is a non-linear group action on the moments of the price increments. Its linear part has a spectral decomposition that puts in evidence a multifractal behavior of the price increments. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2343 / 2348
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1166 COWL FDN
[2]  
FLATO M, 1977, ANN SCI ECOLE NORM S, V10, P405
[3]  
FLATO M, 1997, MEMOIRS AM MATH SOC, V127
[4]  
Frisch U., 1985, Predictability in Geophysical Fluid Dynamics, P84
[5]  
GEMAN H, 1997, T CLOCK ASSET PRICE
[6]  
GEMAN H, 1996, RISK, V9, P146
[7]   Turbulent cascades in foreign exchange markets [J].
Ghashghaie, S ;
Breymann, W ;
Peinke, J ;
Talkner, P ;
Dodge, Y .
NATURE, 1996, 381 (6585) :767-770
[8]   SCALING BEHAVIOR IN THE DYNAMICS OF AN ECONOMIC INDEX [J].
MANTEGNA, RN ;
STANLEY, HE .
NATURE, 1995, 376 (6535) :46-49
[9]   Multifractal asymptotic modeling of the probability density function of velocity increments in turbulence [J].
Tchéou, JM ;
Brachet, ME ;
Belin, F ;
Tabeling, P ;
Willaime, H .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) :93-114
[10]   Multifractal scaling of probability density function: A tool for turbulent data analysis [J].
Tcheou, JM ;
Brachet, ME .
JOURNAL DE PHYSIQUE II, 1996, 6 (06) :937-943