LiV3O8/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries

被引:17
|
作者
Li, Wenjuan [1 ,2 ]
Zhu, Limin [1 ,2 ]
Yu, Ziheng [3 ]
Xie, Lingling [1 ,2 ]
Cao, Xiaoyu [1 ,2 ]
机构
[1] Henan Univ Technol, Sch Chem & Chem Engn, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Key Lab High Specif Energy Mat Electrochem Power, Zhengzhou 450001, Peoples R China
[3] China Pharmaceut Univ, Sch Pharm, Nanjing 211196, Jiangsu, Peoples R China
来源
MATERIALS | 2017年 / 10卷 / 04期
关键词
LiV3O8/polytriphenylamine composites; cathode materials; in situ chemical polymerization method; rechargeable lithium batteries; electrochemical performances; ELECTRODE MATERIALS; POSITIVE ELECTRODE; LIV3O8; NANOSHEETS; DRYING SYNTHESIS; X-RAY; INSERTION; LI1+XV3O8; BEHAVIOR; STATE;
D O I
10.3390/ma10040344
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiV3O8/polytriphenylamine composites are synthesized by a chemical oxidative polymerization process and applied as cathode materials for rechargeable lithium batteries (RLB). The structure, morphology, and electrochemical performances of the composites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, galvanostatic discharge/charge tests, and electrochemical impedance spectroscopy. It was found that the polytriphenylamine particles were composited with LiV3O8 nanorods which acted as a protective barrier against the side reaction of LiV3O8, as well as a conductive network to reduce the reaction resistance among the LiV3O8 particles. Among the LiV3O8/polytriphenylamine composites, the 17 wt % LVO/PTPAn composite showed the largest d(100) spacing. The electrochemical results showed that the 17 wt % LVO/PTPAn composite maintained a discharge capacity of 271 mAh.g(-1) at a current density of 60 mA.g(-1), as well as maintaining 236 mAh.g(-1) at 240 mA.g(-1) after 50 cycles, while the bare LiV3O8 sample retained only 169 and 148 mAh.g(-1), respectively. Electrochemical impedance spectra (EIS) results implied that the 17 wt % LVO/PTPAn composite demonstrated a decreased charge transfer resistance and increased Li+ ion diffusion ability, therefore manifesting better rate capability and cycling performance compared to the bare LiV3O8 sample.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Synthesis and electrochemical performances of LiV3O8/poly (3, 4-ethylenedioxythiophene) composites as cathode materials for rechargeable lithium batteries
    Zhu, Limin
    Li, Wenjuan
    Yu, Zihenq
    Xie, Lingling
    Cao, Xiaoyu
    SOLID STATE IONICS, 2017, 310 : 30 - 37
  • [2] LiV3O8/Polydiphenylamine Composites with Significantly Improved Electrochemical Behavior as Cathode Materials for Rechargeable Lithium Batteries
    Zhu, Limin
    Xie, Lingling
    Cao, Xiaoyu
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) : 10909 - 10917
  • [3] Preparation of LiV3O8/Polypyrrole and Their Derived LiV3O8/Carbon Composites as Cathode Materials for Lithium Rechargeable Batteries
    Cao, Xiaoyu
    Zhang, Jiejie
    Zhu, Limin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (09) : 7081 - 7086
  • [4] Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries
    Liu, Haimei
    Wang, Yonggang
    Wang, Kaixue
    Wang, Yarong
    Zhou, Haoshen
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 668 - 673
  • [5] A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries
    Liu, Haimei
    Wang, Yonggang
    Yang, Wensheng
    Zhou, Haoshen
    ELECTROCHIMICA ACTA, 2011, 56 (03) : 1392 - 1398
  • [6] Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries
    Qiao, Y. Q.
    Wang, X. L.
    Zhou, J. P.
    Zhang, J.
    Gu, C. D.
    Tu, J. P.
    JOURNAL OF POWER SOURCES, 2012, 198 : 287 - 293
  • [7] Synthesis and electrochemical performance of LiV3O8/polythiophene composite as cathode materials for lithium ion batteries
    Guo, Haipeng
    Liu, Li
    Shu, Hongbo
    Yang, Xiukang
    Yang, Zhenhua
    Zhou, Meng
    Tan, Jinli
    Yan, Zichao
    Hu, Hai
    Wang, Xianyou
    JOURNAL OF POWER SOURCES, 2014, 247 : 117 - 126
  • [8] LiV3O8/Ag composite nanobelts with enhanced performance as cathode material for rechargeable lithium batteries
    Liang, Shuquan
    Zhou, Jiang
    Fang, Guozhao
    Li, Xilin
    Pan, Anqiang
    Wu, Jun
    Tang, Yan
    Liu, Jing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 583 : 351 - 356
  • [9] LiV3O8 nanowires with excellent stability for aqueous rechargeable lithium batteries
    Liu, Jingang
    Yi, Lukai
    Liu, Li
    Peng, Peng
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 161 : 211 - 218
  • [10] LiV3O8 nanorods as cathode materials for high-power and long-life rechargeable lithium-ion batteries
    Mei, Peng
    Wu, Xing-Long
    Xie, Haiming
    Sun, Liqun
    Zeng, Yanping
    Zhang, Jingping
    Tai, Linghua
    Guo, Xin
    Cong, Lina
    Ma, Shunchao
    Yao, Cen
    Wang, Rongshun
    RSC ADVANCES, 2014, 4 (49): : 25494 - 25501