On Semisimple Standard Compact Clifford-Klein Forms

被引:0
|
作者
Bochenski, Maciej [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Olsztyn, Poland
关键词
Homogeneous spaces; proper actions; discrete subgroups; Clifford-Klein forms; SYMMETRIC-SPACES; CLASSIFICATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the classification of standard compact Clifford-Klein forms corresponding to triples (g, h, l) such that g = h+l and g is a sum of two absolutely simple ideals. The classification is done using Onishchik's results concerning semisimple decompositions of semisimple Lie algebras. Using this classification we obtain new examples of reductive homogeneous spaces admitting non-standard compact Clifford-Klein forms.
引用
收藏
页码:813 / 819
页数:7
相关论文
共 50 条
  • [41] LEFT INVARIANT CLIFFORD-WOLF HOMOGENEOUS (α, β)-METRICS ON COMPACT SEMISIMPLE LIE GROUPS
    Deng, Shaoqiang
    Xu, Ming
    TRANSFORMATION GROUPS, 2015, 20 (02) : 395 - 416
  • [42] QUANTUM FIELD-THEORY ON CLIFFORD-KLEIN SPACE-TIMES - EFFECTIVE LAGRANGIAN AND VACUUM STRESS-ENERGY TENSOR
    DOWKER, JS
    BANACH, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (11): : 2255 - 2284
  • [43] Clifford theory for semisimple G-groups
    Lafuente, JP
    Lizasoain, I
    Ochoa, G
    JOURNAL OF ALGEBRA, 2000, 231 (02) : 589 - 600
  • [44] Subconvex bounds for Hecke–Maass forms on compact arithmetic quotients of semisimple Lie groups
    Pablo Ramacher
    Satoshi Wakatsuki
    Mathematische Zeitschrift, 2021, 298 : 1383 - 1424
  • [45] Clifford Actions Defining Klein Surfaces
    Tyszkowska, Ewa
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (05)
  • [46] Subconvex bounds for Hecke-Maass forms on compact arithmetic quotients of semisimple Lie groups
    Ramacher, Pablo
    Wakatsuki, Satoshi
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1383 - 1424
  • [47] Clifford parallelisms and external planes to the Klein quadric
    Havlicek H.
    Journal of Geometry, 2016, 107 (2) : 287 - 303
  • [48] Clifford systems, Clifford structures, and their canonical differential forms
    Kai Brynne M. Boydon
    Paolo Piccinni
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 101 - 115
  • [49] Clifford systems, Clifford structures, and their canonical differential forms
    Boydon, Kai Brynne M.
    Piccinni, Paolo
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01): : 101 - 115
  • [50] COMPACT INVERSE CLIFFORD SEMIGROUPS
    YEAGER, DP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A475 - A476