CLASSIFICATION AND RANKING OF FERMI LAT GAMMA-RAY SOURCES FROM THE 3FGL CATALOG USING MACHINE LEARNING TECHNIQUES

被引:82
|
作者
Parkinson, P. M. Saz [1 ,2 ,3 ]
Xu, H. [4 ]
Yu, P. L. H. [4 ]
Salvetti, D. [5 ]
Marelli, M. [5 ]
Falcone, A. D. [6 ]
机构
[1] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Lab Space Res, Hong Kong, Hong Kong, Peoples R China
[3] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA
[4] Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[5] INAF, Ist Astrofis Spaziale & Fis Cosm Milano, Via E Bassini 15, I-20133 Milan, Italy
[6] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
基金
美国国家航空航天局;
关键词
gamma rays: stars; methods: statistical; pulsars: general; LARGE-AREA TELESCOPE; MILLISECOND PULSAR BINARY; BLIND FREQUENCY SEARCHES; RADIO-QUIET; RADIATION; MULTIWAVELENGTH; REGRESSION; DISCOVERY; ASTRONOMY;
D O I
10.3847/0004-637X/820/1/8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply a number of statistical and machine learning techniques to classify and rank gamma-ray sources from the Third Fermi Large Area Telescope Source Catalog (3FGL), according to their likelihood of falling into the two major classes of gamma-ray emitters: pulsars (PSR) or active galactic nuclei (AGNs). Using 1904 3FGL sources that have been identified/associated with AGNs (1738) and PSR (166), we train (using 70% of our sample) and test (using 30%) our algorithms and find that the best overall accuracy (>96%) is obtained with the Random Forest (RF) technique, while using a logistic regression (LR) algorithm results in only marginally lower accuracy. We apply the same techniques on a subsample of 142 known gamma-ray pulsars to classify them into two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more, the RF algorithm has the best overall accuracy (similar to 90%), while a boosted LR analysis comes a close second. We apply our two best models (RF and LR) to the entire 3FGL catalog, providing predictions on the likely nature of unassociated sources, including the likely type of pulsar (YNG or MSP). We also use our predictions to shed light on the possible nature of some gamma-ray sources with known associations (e.g., binaries, supernova remnants/pulsar wind nebulae). Finally, we provide a list of plausible X-ray counterparts for some pulsar candidates, obtained using Swift, Chandra, and XMM. The results of our study will be of interest both for in-depth follow-up searches (e.g., pulsar) at various wavelengths and for broader population studies.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] 3FGLzoo: classifying 3FGL unassociated Fermi-LAT γ-ray sources by artificial neural networks
    Salvetti, D.
    Chiaro, G.
    La Mura, G.
    Thompson, D. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (02) : 1291 - 1297
  • [2] Dark matter subhalos and unidentified sources in the Fermi 3FGL source catalog
    Schoonenberg, Djoeke
    Gaskins, Jennifer
    Bertone, Gianfranco
    Diemand, Juerg
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (05):
  • [3] Expectation on observations of Fermi-LAT gamma-ray sources using the HADAR experiment
    Sun, Hui-Ying
    Qian, Xiang-Li
    Chen, Tian-Lu
    Feng, You-Liang
    Gao, Qi
    Gou, Quan-Bu
    Guo, Yi-Qing
    Hu, Hong-Bo
    Kang, Ming-Ming
    Li, Hai-Jin
    Liu, Cheng
    Liu, Mao-Yuan
    Liu, Wei
    Qiao, Bing-Qiang
    Wang, Xu
    Wang, Zhen
    Xin, Guang-Guang
    Yao, Yu-Hua
    Yuan, Qiang
    Zhang, Yi
    ACTA PHYSICA SINICA, 2023, 72 (19)
  • [4] Optimizing neural network techniques in classifying Fermi-LAT gamma-ray sources
    Kovacevic, M.
    Chiaro, G.
    Cutini, S.
    Tosti, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) : 4770 - 4777
  • [5] THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Bhat, P. N.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burgess, J. Michael
    Buson, S.
    Byrne, D.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Cecchi, C.
    Charles, E.
    Chaves, R. C. G.
    Chekhtman, A.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Connaughton, V.
    Conrad, J.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Desiante, R.
    Digel, S. W.
    Dingus, B. L.
    Di Venere, L.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2013, 209 (01)
  • [6] Classification of Fermi gamma-ray bursts based on machine learning
    Zhu, Si-Yuan
    Sun, Wan-Peng
    Ma, Da-Ling
    Zhang, Fu-Wen
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 532 (02) : 1434 - 1443
  • [7] SEARCH FOR GAMMA-RAY EMISSION FROM FOUR ACCRETING MILLISECOND PULSARS WITH FERMI/LAT
    Xing, Yi
    Wang, Zhongxiang
    ASTROPHYSICAL JOURNAL, 2013, 769 (02)
  • [8] Searches for pulsar-like candidates from unidentified objects in the Third Catalog of Hard Fermi-LAT Sources with machine learning techniques
    Hui, C. Y.
    Lee, Jongsu
    Li, K. L.
    Kim, Sangin
    Oh, Kwangmin
    Luo, Shengda
    Leung, Alex P.
    Kong, A. K. H.
    Takata, J.
    Cheng, K. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (01) : 1093 - 1109
  • [9] UNRAVELING THE NATURE OF UNIDENTIFIED HIGH GALACTIC LATITUDE FERMI/LAT GAMMA-RAY SOURCES WITH SUZAKU
    Maeda, K.
    Kataoka, J.
    Nakamori, T.
    Stawarz, L.
    Makiya, R.
    Totani, T.
    Cheung, C. C.
    Donato, D.
    Gehrels, N.
    Parkinson, P. Saz
    Kanai, Y.
    Kawai, N.
    Tanaka, Y.
    Sato, R.
    Takahashi, T.
    Takahashi, Y.
    ASTROPHYSICAL JOURNAL, 2011, 729 (02)
  • [10] A statistical classification of the unassociated gamma-ray sources in the second Fermi Large Area Telescope Catalog
    Mao, Zhu
    Yu, Yun-Wei
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2013, 13 (08) : 952 - 960