A benchmark for RNA-seq quantification pipelines

被引:114
|
作者
Teng, Mingxiang [1 ,2 ,9 ]
Love, Michael I. [1 ,2 ]
Davis, Carrie A. [3 ]
Djebali, Sarah [4 ,5 ]
Dobin, Alexander [3 ]
Graveley, Brenton R. [6 ]
Li, Sheng [7 ]
Mason, Christopher E. [7 ]
Olson, Sara [6 ]
Pervouchine, Dmitri [4 ,5 ]
Sloan, Cricket A. [8 ]
Wei, Xintao [6 ]
Zhan, Lijun [6 ]
Irizarry, Rafael A. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[3] Cold Spring Harbor Lab, Funct Genom Grp, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA
[4] Ctr Genom Regulat CRG, Bioinformat & Genom Programme, Doctor Aiguader 88, Barcelona 08003, Spain
[5] UPF, Doctor Aiguader 88, Barcelona 08003, Spain
[6] UConn Hlth Ctr, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA
[7] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY USA
[8] Stanford Univ, Dept Genet, 300 Pasteur Dr, Stanford, CA 94305 USA
[9] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
来源
GENOME BIOLOGY | 2016年 / 17卷
关键词
GENE-EXPRESSION; CELL; TRANSCRIPTOMES; NORMALIZATION; ABUNDANCE; ALIGNMENT;
D O I
10.1186/s13059-016-0940-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package (http://bioconductor.org/packages/rnaseqcomp). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Bayesian approach for estimating allele-specific expression from RNA-Seq data with diploid genomes
    Nariai, Naoki
    Kojima, Kaname
    Mimori, Takahiro
    Kawai, Yosuke
    Nagasaki, Masao
    BMC GENOMICS, 2016, 17
  • [42] Defining the transcriptomic landscape of Candida glabrata by RNA-Seq
    Linde, Joerg
    Duggan, Seana
    Weber, Michael
    Horn, Fabian
    Sieber, Patricia
    Hellwig, Daniela
    Riege, Konstantin
    Marz, Manja
    Martin, Ronny
    Guthke, Reinhard
    Kurzai, Oliver
    NUCLEIC ACIDS RESEARCH, 2015, 43 (03) : 1392 - 1406
  • [43] WheatExp: an RNA-seq expression database for polyploid wheat
    Pearce, Stephen
    Vazquez-Gross, Hans
    Herin, Sayer Y.
    Hane, David
    Wang, Yi
    Gu, Yong Q.
    Dubcovsky, Jorge
    BMC PLANT BIOLOGY, 2015, 15
  • [44] Application of RNA-seq to reveal the transcript profile in bacteria
    Pinto, A. C.
    Melo-Barbosa, H. P.
    Miyoshi, A.
    Silva, A.
    Azevedo, V.
    GENETICS AND MOLECULAR RESEARCH, 2011, 10 (03): : 1707 - 1718
  • [45] From RNA-seq reads to differential expression results
    Oshlack, Alicia
    Robinson, Mark D.
    Young, Matthew D.
    GENOME BIOLOGY, 2010, 11 (12):
  • [46] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [47] Simulation-based benchmarking of isoform quantification in single-cell RNA-seq
    Westoby, Jennifer
    Herrera, Marcela Sjoberg
    Ferguson-Smith, Anne C.
    Hemberg, Martin
    GENOME BIOLOGY, 2018, 19
  • [48] SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data
    Kahles, Andre
    Ong, Cheng Soon
    Zhong, Yi
    Ratsch, Gunnar
    BIOINFORMATICS, 2016, 32 (12) : 1840 - 1847
  • [49] Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis
    Zhang, Wei
    Chang, Jae-Woong
    Lin, Lilong
    Minn, Kay
    Wu, Baolin
    Chien, Jeremy
    Yong, Jeongsik
    Zheng, Hui
    Kuang, Rui
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (12)
  • [50] Alternating EM algorithm for a bilinear model in isoform quantification from RNA-seq data
    Deng, Wenjiang
    Mou, Tian
    Kalari, Krishna R.
    Niu, Nifang
    Wang, Liewei
    Pawitan, Yudi
    Trung Nghia Vu
    BIOINFORMATICS, 2020, 36 (03) : 805 - 812